Tentamen Algebraïsche Specificaties 27 mei 2004

You have **three** hours for answering the questions below. In total, you can earn 100 points. Of these, 10 are given to you for free. Good luck!

Question 1 (2 + 3 + 2 + 2 + 3 + 3 points) Let A be an arbitrary non-empty set.

(a) Consider the function

$$even: A^{\omega} \to A^{\omega}$$

that is defined, for all $\sigma \in A^{\omega}$, by the following differential equation:

derivative	initial value
$even(\sigma)' = even(\sigma'')$	$(even(\sigma))(0) = \sigma(0)$

Compute the stream $even(\sigma)$.

(b) Define the function

$$odd: A^{\omega} \to A^{\omega}, \quad odd(\sigma) = (\sigma(1), \sigma(3), \sigma(5), \ldots)$$

by means of a differential equation.

(c) Define the function

$$f: A^{\omega} \to A^{\omega}, \quad f(\sigma) = (\sigma(2), \sigma(6), \sigma(10), \ldots)$$

for all $\sigma \in A^{\omega}$, by means of a differential equation.

- (d) Let $R \subseteq A^{\omega} \times A^{\omega}$ be a relation on A^{ω} . When is R a bisimulation relation?
- (e) Formulate the coinduction proof principle.
- (f) Prove by coinduction, for all $\sigma \in A^{\omega}$: $f(\sigma) = odd(even(\sigma))$ (with f as defined in part (c)).

Question 2 (3 + 3 + 4 points)

Let A be an arbitrary non-empty set.

(a) Consider the function

$$Z: (A^{\omega} \times A^{\omega}) \to A^{\omega}$$

that is defined, for all $\sigma, \tau \in A^{\omega}$, by the following differential equation:

derivative	initial value
$Z(\sigma, \tau)'' = Z(\sigma', \tau')$	$Z(\sigma,\tau)(0) = \sigma(0), \ Z(\sigma,\tau)'(0) = \tau(0)$

Compute the stream $Z(\alpha, \beta)$, for arbitrary streams α and β in A^{ω} .

(b) Define the function

$$D: A^{\omega} \to A^{\omega}, \quad D(\sigma) = (\sigma(0), \sigma(0), \sigma(1), \sigma(1), \sigma(2), \sigma(2), \dots)$$

for all $\sigma \in A^{\omega}$, by means of a differential equation.

(c) How are the functions Z and D related? Prove your claim by coinduction.

Question 3 (3 + 3 + 3 + 3 + 3 points)

Consider the set \mathbb{R}^{ω} of streams of real numbers.

- (a) Give the definition of the convolution product $\sigma \times \tau$ of two streams σ and τ in R^{ω} .
- (b) Define the sum $\sigma + \tau$ of two streams σ and τ in R^{ω} , by means of a differential equation.
- (c) Recall the following definitions:

$$X = (0, 1, 0, 0, 0, \dots), \quad [r] = (r, 0, 0, 0, \dots) \quad (r \in \mathbb{R})$$

Compute the first 7 elements of each of the following streams (as usual, we simply write r instead of [r]):

- (i) $X \times 3 \times X^3$
- (ii) $(3+8X^2)+(5-7X^2+X^5)$
- (iii) $(1+2X)^3$

- (d) Compute the stream $X \times \sigma$, for an arbitrary stream $\sigma \in \mathbb{R}^{\omega}$.
- (e) Prove the following equality, for all $\sigma \in \mathbb{R}^{\omega}$:

$$\sigma = \sigma(0) + (X \times \sigma')$$

Question 4(3 + 3 + 3 + 3 + 3 points)

(a) Consider the following differential equation:

derivative	initial value
$\sigma' = \sigma$	$\sigma(0) = 1$

Compute the stream σ .

(b) Consider the following differential equation:

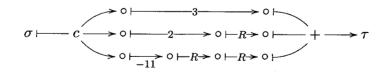
derivative	initial value
$\tau' = X \times \tau$	$\tau(0) = 1$

Compute the stream τ .

- (c) Show that the stream τ (from part (b)) satisfies the following equality: $\tau \times (1 X^2) = 1$. (In other words: $\tau = \frac{1}{1 X^2}$.)
- (d) Consider the stream $\delta = \frac{1}{1+X^3}$. Define δ by means of a differential equation.
- (e) Compute the first 9 elements of the stream δ .

Question 5 (4 + 2 + 4 points)

(a) What is the stream function $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by the following stream circuit?:

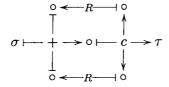


(b) What is the stream generated by this circuit?

(c) Give a general description of the kind of streams that can be generated by finite so-called feed-forward circuits (i.e., finite circuits without feedback loops) such as the one in part (a).

Question 6 (5 + 5 + 5 points)

(a) Compute the stream function $f: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by the following circuit:



- (b) Does there exist an equivalent circuit (that is, implementing the same stream function) that has only one register? If so, show one. If not, explain why not.
- (c) Compute the stream function $g: \mathbb{R}^{\omega} \to \mathbb{R}^{\omega}$ that is implemented by the following circuit:

Question 7 (4 + 6 points)

Consider the set \mathbb{R}^{ω} of streams of real numbers.

- (a) Compute the stream $zip(\frac{1}{1-X}, \frac{2}{1-X})$.
- (b) Prove that the stream in part (a) is rational.