Faculty of Sciences	Algebra II
VU University Amsterdam	Exam 26-5-2009 (8:45-11:30)

Attention

- (1) Attempt all 11 questions. If you cannot do a part of a problem then you may still use the result in the rest of the problem.
- (2) The exam and solutions (in Dutch) will appear shortly on blackboard.

1. Knowledge Questions

- (1) (a) Define the kernel of a group homomorphism $f: G \to H$ and show that is is a normal subgroup of G.
 - (b) Define the center Z(G) of a group G.
 - (c) Define the commutator subgroup [G, G] of a group G.
- (2) Let G be a group, X a non-empty set on which G acts (on the left).
 - (a) What is meant by this action of G on X?
 - (b) Define the *orbit* and the *stabilisor* of an element x in X.
 - (c) Show that if x and y are in the same orbit in X, then their stabilisors are conjugate.
- (3) Let R be a commutative ring with 1 (identity), $f \neq 0$ a polynomial in R[x] with $\deg(f) \geq 1$ and leading coefficient in R^* .
 - (a) What does division with remainder state in this case?
 - (b) Use this to describe the different classes in the quotient ring R[x]/(f). You have to prove your statement.
- (4) Let R be an integral domain.
 - (a) When is an element x of R with $x \neq 0$
 - (i) a prime element of R;
 - (ii) an *irreducible element* of R?
 - (b) When is R
 - (i) a Euclidean domain;
 - (ii) a principal ideal domain;
 - (iii) a unique factorization domain?

2. Problems

Answers without reasoning score poorly so give good arguments everywhere.

- (5) Determine which of the four groups A_4 , $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/3\mathbb{Z}$, $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}$ and $S_3 \times \mathbb{Z}/2\mathbb{Z}$ are mutually isomorphic and which are not.
- (6) We consider the subset

$$G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \text{ with } a, b, c \text{ in } \mathbb{R} \text{ and } ac = 1 \right\}$$

of $GL_2(\mathbb{R})$, the set of invertable 2×2 -matrices with real coefficients.

- (a) Show that G is a subgroup of $GL_2(\mathbb{R})$ under the usual multiplication of matrices in $GL_2(\mathbb{R})$.
- (b) Show that the map $f: G \to \mathbb{R}^*$ given by $f(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}) = a$ is a homomorphism of groups.
- (c) Determine the commutator subgroup [G,G] of G. Formulate the theorems you use for this. *Hint*: compute the commutators [x,y] with $x=\begin{pmatrix} 2 & 0 \\ 0 & 1/2 \end{pmatrix}$ and $y=\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$.
- (7) Let $f: G \to G'$ be a homomorphism of groups and H a subgroup of G with [G: H] finite.

- (a) Show that $[G:H] \ge [f(G):f(H)]$.
- (b) Show that if $\ker(f) \subseteq H$ then we even have [G:H] = [f(G):f(H)].
- (8) Let $R = \mathbb{Z}[i]$, the ring of Gaussian integers.
 - (a) Use the Euclidean algorithm on R in order to write the ideal (2+4i,5+5i) of R as a principal ideal.
 - (b) Use the norm in order to determine factorizations of 2+3i and of 2+4i into irreducibles of R.
- (9) Let x be a variable and $R = \mathbb{Z}[x]$.

 - (a) Show that the ideal $(5, x^2 + 1)$ is not a principal ideal of R. (b) Factorize $f = 7x^3 + 28x^2 + 42x + 21$ into irreducible factors in R.
- (10) In this problem, also formulate the theorems that you are using in your reasoning.

Let $R = \mathbb{Z}[\sqrt{-5}]$, I the ideal $(3 - \sqrt{-5}, 7)$ of R, and $f : R \to \mathbb{Z}/7\mathbb{Z}$ the map given by $f(a+b\sqrt{-5}) = \overline{a+3b}$.

- (a) Show that f is a homomorphism of rings.
- (b) Show that there is a ring isomorphism $R/I \cong \mathbb{Z}/7\mathbb{Z}$.
- (c) Is I a maximal ideal and/or a prime ideal of R?
- (11) (a) Use the norm in order to determine all divisors of 4 in the ring $\mathbb{Z}[\sqrt{-3}]$.
 - (b) Is $\mathbb{Z}[\sqrt{-3}]$ a unique factorization domain?

	Points										
1a: 4	2a: 3	3a: 3	4a: 4	5: 6	6a: 3	7a: 3	8a: 4	9a: 5	10a: 2	11a: 3	
1		3b: 4			6b: 2	7b: 4	8b: 4	9b: 4	10b: 4	11b: 3	
1c: 2	2c: 3				6c: 4				10c: 4		
71 67 1		. 7	00						-8 1 F87-	+01/10	
Maximum total = 90 Grade								ade =	1 + Tc	tal/1	