- 1. a. Let A be a closed subspace of a Lindelöf space X. Prove that A is Lindelöf.
 - b. Let A be an uncountable subset of a Lindelöf space X. Prove that A has a limit point.
- 2. Let X denote the real line with the half-open interval topology, and let $Y = X \times X$.
 - a. Prove that $\mathcal{B} = \{[a,b) \times [c,d) : a,b,c,d \in \mathbb{R}, a < b,c < d \}$ is a basis for Y.
 - b. Show that Y is separable.
 - c. Show that the line y = -x + 1 is a closed and discrete subspace of Y.
 - d. Show that Y is not Lindelöf.
- 3. a. Prove that a finite product of discrete spaces is discrete.
 - b. For $i \in \mathbb{N}$, let X_i be a discrete space containing more than one point. Prove that $\prod_{i=1}^{\infty} X_i$ is not discrete.
- 4. a. Let $f: X \to Y$ be a quotient map with Y connected and $f^{-1}(y)$ connected for every $y \in Y$. Prove that X is connected.
 - b. Let (X, d) be a metric space with disjoint, non-empty, closed subsets A and B. Define $f: X \to [0, 1]$ by:

$$f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}.$$

Prove that f is well-defined and continuous. Prove that X is normal.