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MC.1 Consider the signal plus noise model for the time series yt and the signal µt, with
time index t = 1, . . . , n, as given by

yt = µt + εt, µt+1 = φµt + ηt, t = 1, . . . , n,

where all variables are scalars, with the autoregressive signal µt and the disturbances
εt and ηt, which are normally and independently distributed with mean zero and
variance σ2

ε > 0 and σ2
η > 0, respectively, both disturbance sequences are mutually

and serially uncorrelated, and with autoregressive coefficient |φ| < 1. The initial
variable µ1 is treated as a stochastic variable.

What is the correct expression for the unconditional variance of yt, that is Var(yt)?

a. σ2
ε

b. σ2
η / (1− φ2)

c. (σ2
ε + σ2

η) / (1− φ2)

d. σ2
ε + σ2

η / (1− φ2)

Answer: d.
Since |φ| < 1, we know that µt is a stationary AR(1)-process and hence that its
unconditional variance is σ2

η/(1−φ2). Subsequently, Var(yt) = Var(µt)+Var(εt) =
σ2
η/(1− φ2) + σ2

ε .
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MC.2 Suppose x and y are jointly Normally distributed vectors with means µx = E(x)
and µy = E(y), respectively, with variance matrices Σxx and Σyy, respectively, and
covariance matrix Σxy. Further define x̂ = E(x|y) and e = x− x̂.

Can you provide an expression for E(xe′|y) ?

a. 0

b. Cov(x, y)

c. Var(x|y)

d. Var(x)

Answer: c.
The derivation is very much similar to Slide 23 of Tutorial 2. In this case, step 1
will give E[x̂e′|y] = 0 and step 2 uses E[xe′|y] = E[xe′|y] − E[x̂e′|y] for e = x − x̂.
The only difference with the mentioned slide is that we already condition on the
vector y, hence the LIE and (B) are no longer needed.
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MC.3 Consider the signal plus noise model for the time series yt and the signal µt, with
time index t = 1, . . . , n, as given by

yt = µt + εt, µt+1 = φµt + ηt, t = 1, . . . , n,

where all variables are scalars, with the autoregressive signal µt and the disturbances
εt and ηt, which are normally and independently distributed with mean zero and
variance σ2

ε > 0 and σ2
η > 0, respectively, both disturbance sequences are mutually

and serially uncorrelated, and with autoregressive coefficient |φ| < 1. The initial
variable µ1 is treated as a stochastic variable.

We need to apply the Kalman filter for the model in state space form with state
vector αt ≡ µt. For the parameters of the model, we take the values φ = 0.8,
σ2
ε = 1 and σ2

η = 0.52. For a given value of a1 = 1 and p1 = 3, and for the realised
observations y1 = 2 and y2 = 1.

Please provide the numerical value for a3 = E(α3|y1, y2).

a. a3 = −0.12

b. a3 = 0.96

c. a3 = 1.33

d. a3 = −2.44

Answer: b.
We use Slide 24 of Lecture 2 for the AR(1)+noise model. This gives f1 = 4, k1 = 0.6
and v1 = 1 such that a2 = 1.4 and p2 = 1. Then, f2 = 2, k2 = 0.4 and v2 = −0.4
such that a3 = 0.96.
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MC.4 Consider a bivariate dynamic factor model for the time series xt and yt as given by(
xt
yt

)
=

(
1
β

)
µt + εt, µt+1 = µt + ηt,

where µt is the common random effect modeled as a random walk process, β is
the loading (or weight) to the common effect for yt, the disturbance vector εt ∼
NID(0,Σε) and disturbance ηt ∼ NID(0, σ2

η) are normally distributed, serially and
mutually independent, for t = 1, . . . , n. The 2 × 2 variance matrix Σε and the
variance σ2

η are both unknown.

Your colleague is interested in the time series variable zt that is of key interest. She
has derived the following structural equation for zt, that is

zt = a+ 5 · xt + 2 · yt + κt κt ∼ NID(0, σ2
κ),

where a is an unknown scalar constant and σ2
κ is the unknown variance of the

disturbances κt, and where xt and yt are generated by the dynamic factor model
given above. Your colleague argues that zt can be assumed stationary.

What condition for β is needed to assume that zt is stationary ?

a. β = 2.5

b. β = −0.4

c. β = −2.5

d. β = 0.4

Answer: c.
To have that zt is a stationary process, we need that the random walk process
µt is no longer part of it. By rewriting the expression of zt, we see that zt =
a+ (5 + 2β)µt + 5ε1t + 2ε2t + κt. Hence, zt can only be stationary if 5 + 2β = 0.
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MC.5 Consider the non-Gaussian state space model

yt ∼ p(yt|θt), θt = Ztαt, αt+1 = dt + Ttαt + ηt,

for t = 1, . . . , n, with the usual notation. In our analysis of the founder’s day in
March of the First Peewit Egg, we analyse the resulting yearly time series yt using
the exponential density as given by

p(yt|θt) = exp(−θt) exp [−yt exp(−θt)] , yt > 0.

To compute the conditional mode of θt, for t = 1, . . . , n, we adopt a linear model
xt = θt + ut with error ut ∼ NID(0, At).

What is the expression for At ?

a. At = 1

b. At = 1/yt

c. At = exp(θt)/yt

d. At = exp(θt)

Answer: c.
We follow the usual notation of Slides 51 and 54 of Week 4. First consider log p(yt|θt) =
−θt− yt exp(−θt), such that ṗt = −1 + yt exp(−θt) and p̈t = −yt exp(−θt). Then we
know that At = −p̈−1t = exp(θt)/yt.
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Open Question

Consider the signal plus noise model for time series yt and signal µt as given by

yt = µt + εt, εt ∼ NID(0, σ2
ε),

µt+1 = µt + βt, βt+1 = φβt + ζt, ζt ∼ NID(0, σ2
ζ ),

t ∈ Z,

where all variables are scalars: signal µt is a ”smooth” trend process with a stationary
autoregressive process for the growth βt with autoregressive coefficient |φ | < 1. The
disturbances ε and ζt are normally and independently distributed, both disturbances
are also mutually independent. The parameters in the model are collected in vector
ψ = (φ , σ2

ε , σ
2
ζ )
′. We have two observations y1 and y2, that is T = 2.

Give an expression for the exact diffuse loglikelihood (with κ→∞) as a function in terms
of observations and parameter vector ψ, that is, function of y1, y2, φ, σ2

ε and σ2
ζ .

HINT: start with placing the model in state space form, go through the Kalman filter
equations for t = 1, 2, and construct the expression for the diffuse loglikelihood function.
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Answer:

State space

αt = (µt, βt)
′, Zt = (1, 0), Ht = σ2

ε , Tt =

[
1 1
0 φ

]
, Rt =

[
0
1

]
, Qt = σ2

ζ ,

with initial conditions

a1 = 0, P1 =

[
κ 0
0 σ2

ζ / (1− φ2)

]
, κ→∞.

Kalman filter t = 1: define p∗ = σ2
ζ / (1− φ2) such that

v1 = y1
f1 = κ+ σ2

ε , κ→∞

K1 =

[
1 1
0 φ

] [
κ 0
0 p∗

] [
1
0

]
/(κ+ σ2

ε)→
[

1
0

]
.

Kalman update:

a2 = T1a1 +K1v1 = 0 + (1, 0)′y1 = (y1, 0)′

P2 =

[
1 1
0 φ

] [
κ 0
0 p∗

] [
1 0
1 φ

]
−K1f1K

′
1 +R1Q1R

′
1

=

[
κ+ p∗ φp∗
φp∗ φ2p∗

]
−
[
κ2/(κ+ σ2

ε) 0
0 0

]
+R1Q1R

′
1

→ p∗

[
1 φ
φ φ2

]
+

[
σ2
ε 0

0 σ2
ζ

]
.

Computing v2 and f2:

v2 = y2 − y1
f2 = p∗ + 2σ2

ε = [σ2
ζ / (1− φ2)] + 2σ2

ε
.

Diffuse loglikelihood function definition:

`D(y1, y2;ψ) = `(y1, y2;ψ) +
1

2
log κ,

as κ→∞. We have

`D(y1, y2;ψ) = − log 2π − 1

2
log f1 −

1

2
v21/f1 −

1

2
log f2 −

1

2
v22/f2 +

1

2
log κ,

where v1 = y1, f1 = κ+ σ2
ε , v2 = y2 − y1 and f2 = [σ2

ζ / (1− φ2)] + 2σ2
ε .

Final expression: first notice

log f1 = log κ(f1/κ) = log κ+ log(f1/κ).

Then we obtain

`D(y1, y2;ψ) = − log 2π − 1

2
log(f1/κ)− 1

2
y21/(κ+ σ2

ε)−
1

2
log f2 −

1

2
(y2 − y1)2/f2,

as κ→∞,

`D(y1, y2;ψ) = − log 2π−1

2
log
(
[σ2
ζ / (1− φ2)] + 2σ2

ε

)
−1

2
(y2−y1)2/

(
[σ2
ζ / (1− φ2)] + 2σ2

ε

)
.
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