Department of Mathematics	Practice exercises "Stochastic Processes for Finance"
Vrije Universiteit	December 2005

Give your answers in English. It is not allowed (nor useful) to use calculators. Good luck!

1. (Arbitrage arguments)

Consider a standard Black-Scholes market with fixed interest rate r, let S_t denote the stockprice at time $t \geq 0$. Fix a maturity T > 0, strike price K > 0 and denote by C_t , resp. P_t , the value at time $t \leq T$ of a European call option, resp. put option, with maturity T and strike price K. Using an arbitrage argument, show that

$$C_t - P_t = S_t - Ke^{-r(T-t)}$$

for all $t \in [0, T]$ (this is the so-called *call-put parity*).

2. (Discrete-time martingales)

In this exercise time is discrete, (\mathcal{F}_n) is a given filtration. Show that if a (discrete-time) process X is predictable and also a martingale, it is constant, i.e. $X_n = X_0$ for all n.

3. (Random walk)

Let $p \in (0,1)$ be given. Define the discrete-time process S by putting $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$, where the X_i 's are independent and $\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = -1) = p$. Show that S is a martingale with respect to its natural filtration if and only p = 1/2.

4. (Brownian motion)

- (a) Let W be a Brownian motion. Show that the processes -W and $(W_{t+1}-W_1)_{t\geq 0}$ are Brownian motions as well.
- (b) Let Z be standard normally distributed and define $X_t = \sqrt{t}Z$. Is the process X a Brownian motion? (Explain why/why not.)

5. (Stochastic calculus)

Let W be a Brownian motion and (\mathcal{F}_t) its natural filtration.

(a) Using Itô's formula, show that the process

$$\left(\int_0^t W_s \, ds - tW_t\right)_{t \ge 0}$$

is a martingale.

(b) Using part (a) and Itô's formula, show that the process

$$(W_t^3 - 3tW_t)_{t \ge 0}$$

is a martingale.

6. (Black-Scholes)

Let B and S be the bond and stock price processes in a Black-Scholes market. These are assumed to satisfy $B_t = \exp(rt)$ and $S_t = \exp(\mu t + \sigma W_t)$, where r, μ and σ are given numbers and W is a Brownian motion.

- (a) Use Itô's formula to obtain a stochastic differential equation for the process S.
- (b) Determine the quadratic variation process [S].

7. (Hull-White)

In the Hull-White model the short rate is assumed to satisfy, under the martingale measure \mathbb{Q} , the SDE

$$dr_t = (\theta(t) - ar_t) dt + \sigma dW_t,$$

where W is a Brownian motion, a, σ are constants and θ is a deterministic function.

Apply Itô's formula to $\exp(at)r_t$ to express $\exp(at)r_t - r_0$ as the sum of a stochastic integral and an ordinary integral.