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Give your answers in English.
It is not allowed (nor useful) to use calculators.
Good luck!

1. (Arbitrage arguments)

Consider a standard Black-Scholes market with fixed interest rate r, let St denote
the stockprice at time t ≥ 0. Fix a maturity T > 0, strike price K > 0 and denote
by Ct, resp. Pt, the value at time t ≤ T of a European call option, resp. put option,
with maturity T and strike price K. Using an arbitrage argument, show that

Ct − Pt = St − Ke−r(T−t)

for all t ∈ [0, T ] (this is the so-called call-put parity).

2. (Discrete-time martingales)

In this exercise time is discrete, (Fn) is a given filtration. Show that if a (discrete-
time) process X is predictable and also a martingale, it is constant, i.e. Xn = X0

for all n.

3. (Random walk)

Let p ∈ (0, 1) be given. Define the discrete-time process S by putting S0 = 0 and
Sn = X1 + · · · + Xn, where the Xi’s are independent and P(Xi = 1) = 1 − P(Xi =
−1) = p. Show that S is a martingale with respect to its natural filtration if and
only p = 1/2.

4. (Brownian motion)

(a) Let W be a Brownian motion. Show that the processes −W and (Wt+1−W1)t≥0

are Brownian motions as well.

(b) Let Z be standard normally distributed and define Xt =
√

tZ. Is the process
X a Brownian motion? (Explain why/why not.)

5. (Stochastic calculus)

Let W be a Brownian motion and (Ft) its natural filtration.

(a) Using Itô’s formula, show that the process

( ∫
t

0

Ws ds − tWt

)
t≥0

is a martingale.



(b) Using part (a) and Itô’s formula, show that the process

(W 3
t
− 3tWt)t≥0

is a martingale.

6. (Black-Scholes)

Let B and S be the bond and stock price processes in a Black-Scholes market. These
are assumed to satisfy Bt = exp(rt) and St = exp(µt + σWt), where r, µ and σ are
given numbers and W is a Brownian motion.

(a) Use Itô’s formula to obtain a stochastic differential equation for the process S.

(b) Determine the quadratic variation process [S].

7. (Hull-White)

In the Hull-White model the short rate is assumed to satisfy, under the martingale
measure Q, the SDE

drt = (θ(t) − art) dt + σ dWt,

where W is a Brownian motion, a, σ are constants and θ is a deterministic function.

Apply Itô’s formula to exp(at)rt to express exp(at)rt − r0 as the sum of a stochastic
integral and an ordinary integral.


