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This exam consists of five exercises, for which you can obtain 54 points
in total. Your grade will be calculated as (number of points + 6)/6. The use
of books or a graphical calculator is not allowed. At the end of the exam, a
formula sheet is included; you can use these formulas without proof if rele-
vant. Please write your name and student number on every paper you hand
in and provide a clear motivation of all your answers. Good luck!

Question 1. Consider a discrete-time Markov chain on the state space
{1, 2, 3, 4, 5}.

(a) [5pt] Assume the transition matrix is

P =


1
3

1
3

0 1
3

0

0 0 1 0 0

0 1 0 0 0

0 0 0 0 1

0 0 0 2
3

1
3


For initial state (i) X0 = 1, determine with which probability the Markov
chain ends up in each of the absorbing classes. For initial states (ii) X0 = 2,
(iii) X0 = 5, determine whether a limit distribution exists and find the limit
distribution in case it exists.

(b) [4pt] Assume the transition matrix is

P =
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
(question continued on next page)
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Note that the only difference with part (a) is in the transitions out of state 3.
What is the expected number of steps it takes to reach state 4 from state 1?

Question 2. Every day Bob commutes to work in the morning and then
commutes back home in the evening. From time to time he likes to buy a
coffee to-go for his commute. As an environmentally conscious person, Bob
owns three travel coffee cups and uses them for his to-go coffees when he
can.

To be more specific, each commute Bob feels like having a coffee with
probability 2/3, independently of his other commutes. If Bob does feel like
having a coffee and finds one of the travel cups at the starting location of
the commute, he grabs that cup along (so the cup transfers to the end lo-
cation of the commute). If Bob does feel like having a coffee but finds no
travel cup at the starting location, he will buy a coffee in a disposable cup. If
Bob does not feel like having a coffee, he does not carry any travel cups along.

(a) [5pt] Argue that the following sequence is a discrete-time Markov chain:

Xn = number of travel cups at the starting location of commute n.

Hint: note that the starting location of the next commute n + 1 is the end
location of commute n. Hence, you need to consider transitions between the
starting and end locations of a commute.

(b) [4pt] What is the long-run fraction of commutes for which Bob finds
no travel cup at the starting location?

(c) [3pt] Each time Bob uses a travel coffee cup, he gets a discount of
e0.25 on his coffee. How much does Bob save on average per commute over
the long time-run?

Question 3. An emergency desk receives true alarms according to a Poisson
process with rate 8 per day. It also receives false alarms according to a Pois-
son process with rate 1 per day. The two Poisson processes are independent.

(a) [4pt] What is the probability that the next two alarms are both true
alarms?
Hint: what is the distribution of the times between successive true alarms?
and between successive false alarms?

(question continued on next page)
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(b) [6pt] A 24-hour day consists of three 8-hour shifts. What is the proba-
bility that exactly 3 alarms (in total, true and false) are received on a given
day but none of them is received in the middle shift of the day?

Question 4. Consider a single-server system where potential customers ar-
rive according to a Poisson process with rate λ. If, upon arrival, a customer
finds i = 1, 2, . . . other customers in the system, then this customer joins
the queue with probability 1/(i + 1) or leaves immediately with probability
i/(i+1). A customer that arrives into an empty system immediately proceeds
to the server. The service times are distributed exponentially with rate µ.

(a) [5pt] Argue that the number of customers in the system is a continuous-
time Markov chain. Intuitively, for which λ and µ is this system stable?

(b) [4pt] Find the occupancy distribution pocc in the stable scenario.

Hint: the Taylor expansion for the exponential function is ex =
∑∞

i=0

xi

i!
.

(c) [3pt] Express the fraction of lost customers in terms of the proba-
bilities pocci . You do not have to further plug in the formulas for pocc that you
found in (b).

Question 5. Jobs arrive at a server according to a Poisson process of rate
λ = 1/3 and are served in the order of arrival. For 1/4 of the jobs, their
service times have a normal N(4, 12) distribution. The remaining 3/4 of the
jobs require a fixed service time 2.

(a) [5pt] Find the average waiting time EW .

For part (b), consider a new situation where the server requires start-up
times of fixed duration 3. That is, when, after an idling period with no jobs
to do, the server receives a job, it will only start serving that job 3 time units
later.
You can use without proof the fact that the system with such start-up times
is still stable, and hence the long-run fraction of time that the server is busy
serving jobs is given by ρ. Moreover, denote by Πidle the long-run fraction of
time that the server is idling with no jobs to do, and denote by Πstart-up the
long-run fraction of time that the server is starting-up.

(question continued on next page)
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(b) [6pt] Find the average waiting time EW in this new situation by doing
Mean Value Analysis.
Hint: in the arrival relation, consider what an arriving job has to wait for
if it arrives when the server is idling with no jobs to do, when the server is
starting-up, and when the server is busy serving another job. You can leave
Πidle and Πstart-up as they are in your solution, you do not have to calculate
them.
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2B)E(B), where c2B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.

5


