
SOLUTIONS
Resit Stochastic Modelling

February 12, 2024

Question 1. Consider a discrete-time Markov chain on the state space
{1, 2, 3, 4, 5}.

(a) [5pt] Assume the transition matrix is

P =


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
For initial state (i) X0 = 1, determine with which probability the Markov
chain ends up in each of the absorbing classes. For initial states (ii) X0 = 2,
(iii) X0 = 5, determine whether a limit distribution exists and find the limit
distribution in case it exists.

Solution Looking at the transition diagram,
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there are three communicating classes:

- {1} is transient,

- {2,3} is absorbing and periodic with period 2,

- {4,5} is absorbing and aperiodic.
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(i) If X0 = 1, then the Markov chain ends up in {2, 3} with probability

P (escape to 2 | escape from 1) =
1/3

1/3 + 1/3
= 1/2

and, similarly, ends up in {4, 5} with probabiltiy 1/2.

(ii) If X0 = 2, then the Markov chain forever stays in the absorbing class
{2,3}. It oscillates between states 2 and 3 and and hence πlim does not exist.
More formally, the transient distributions repeat the pattern

. . .

π(n) = (0, 1, 0, 0, 0)

π(n+1) = (0, 0, 1, 0, 0)

. . .

and do not converge.

(iii) If X0 = 5, then the Markov chain forever stays in the absorbing class
{4,5}. This class is finite and aperiodic, hence the limit distribution within
this class exists and is given by the balance and normalization equations

π4 = π5 ∗ 2/3,

π5 = π4 + π5 ∗ 1/3,

π4 + π5 = 1,

which give π4 = 2/5, π5 = 3/5. Then the limit distribution on the whole
state space is

πlim = (0, 0, 0, 2/5, 3/5).

(b) [4pt] Assume the transition matrix is

P =


1
3

1
3

0 1
3

0

0 0 1 0 0
1
2

1
2

0 0 0

0 0 0 0 1

0 0 0 2
3

1
3


Note that the only difference with part (a) is in the transitions out of state 3.
What is the expected number of steps it takes to reach state 4 from state 1?
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Solution Let T4 := min{n ≥ 0: Xn = 4} and mi := E(T4 | X0 = i).
The question is what is m1.

By conditioning on the 1st step we get the system
(1) m1 = 1 + 1/3m1 + 1/3m2 + 1/3 ∗ 0,

(2) m2 = 1 +m3,

(3) m3 = 1 + 1/2m1 + 1/2m2.

We plug (3) into (2) and get

m2 = 1 + 1 + 1/2m1 + 1/2m2 ⇔ m2 = 4 +m1,

which we plug into (1) and get

m1 = 1 + 1/3m1 + 4/3 + 1/3m1 ⇔ 1/3m1 = 7/3 ⇔ m1 = 7.

Question 2. Every day Bob commutes to work in the morning and then
commutes back home in the evening. From time to time he likes to buy a
coffee to-go for his commute. As an environmentally conscious person, Bob
owns three travel coffee cups and uses them for his to-go coffees when he
can.

To be more specific, each commute Bob feels like having a coffee with
probability 2/3, independently of his other commutes. If Bob does feel like
having a coffee and finds one of the travel cups at the starting location of
the commute, he grabs that cup along (so the cup transfers to the end lo-
cation of the commute). If Bob does feel like having a coffee but finds no
travel cup at the starting location, he will buy a coffee in a disposable cup. If
Bob does not feel like having a coffee, he does not carry any travel cups along.

(a) [5pt] Argue that the following sequence is a discrete-time Markov chain:

Xn = number of travel cups at the starting location of commute n.

Hint: note that the starting location of the next commute n + 1 is the end
location of commute n. Hence, you need to consider transitions between the
starting and end locations of a commute.

Solution The transition diagram is
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First we explain explain how the transition probabilities are calculated. Using
the hint, the transitions between the starting location of commute n and
starting location of commute n + 1 are the transitions between the starting
and end locations of commute n. So we can think of the transitions as follows:
if there are i cups at the starting location (say, home) of a commute, then
what is the probability that - after this commute - there are j cups at the
end location (say, work).

- If there are i = 2 cups at home before a commute to work, that means
there is 1 cup at work before that commute. Wp 2/3 (1/3) there will be
a coffee-wish (no coffee-wish) for that commute and that will transfer
1 extra cup (no extra cup) to work, making it j = 1 + 1 = 2 cups at
work (j = 1 + 0 = 1 cups at work) at the end of the commute.

- Transition probabilities out of states i = 1 and i = 3 are calculated
similarly.

- If there are i = 0 cups at home before the commute, there is no cups
to transfer to work in any case, regardless of whether there is a coffee-
wish or not for that commute. All 3 of the cups are at work before the
commute and it will in any case remain j = 3 cups at work at the end
of the commute.

The Markov property follows from the independence of Bob’s coffee wishes
for the different commutes. The time-homogeneity is in place since the tran-
sition probabilities in the diagram do not depend on time n. To summarize,
Xn, n ≥ 0, is a time-homogeneous DTMC.

(b) [4pt] What is the long-run fraction of commutes for which Bob finds
no travel cup at the starting location?

Solution The question is what is πocc0 .
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Since this MC is irreducible and has a finite state space, it has a πocc, which
solves the following systems of equations:

balance for state 0 π0 = π3
1
3
, 1) π3 = 3π0

balance for set {0, 3} π3
2
3

= π1
2
3
, 2) π1 = π3 = 3π0

balance for state 2 π2
1
3

= π1
1
3
, 3) π1 = π2 = 3π0

norm π0 + π1 + π2 + π3 = 1 4) (1 + 3 + 3 + 3)π0 = 1⇒ π0 = 1
10
.

Hence, the final answer to (b) is πocc0 = 1
10

.

Also, as will be relevant for (c), the full occupancy distribution is

πocc = ( 1
10
, 3
10
, 3
10
, 3
10

).

(c) [3pt] Each time Bob uses a travel coffee cup, he gets a discount of e0.25
on his coffee. How much does Bob save on average per commute over the
long time-run?

Solution The generic discount in each state is:

C0 = 0, C1 = C2 = C3 =

{
0.25 wp 2/3, if Bob wants a coffee on that commute

0 wp 1/3. if does not

Hence the long-run average discount (savings) per commute is

πocc0 EC0 + πocc1 EC1 + πocc2 EC2 + πocc3 EC3 =

( 3
10

+ 3
10

+ 3
10

)(2
3
· 0.25) = e0.15.

Question 3. An emergency desk receives true alarms according to a Poisson
process with rate 8 per day. It also receives false alarms according to a Pois-
son process with rate 1 per day. The two Poisson processes are independent.

(a) [4pt] What is the probability that the next two alarms are both true
alarms?
Hint: what is the distribution of the times between successive true alarms?
and between successive false alarms?

Solution Denote by T1 (F1) the time until the next true (false) alarm and
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by T2 the time between the next and 2nd next true alarms. The question is
what is

P (T1 < F1, T2 < remaining F1).

In this probability, T1 and T2 ∼ Exp(8), F1 and remaining F1 ∼ Exp(1), and
there is independence within the pairs of competing exponentials. Hence,
the answer is

P (T1 wins from F1, T2 wins from remaning F1) =
8

8 + 1
· 8

8 + 1
=

64

81
.

(b) [6pt] A 24-hour day consists of three 8-hour shifts. What is the proba-
bility that exactly 3 alarms (in total, true and false) are received on a given
day but none of them is received in the middle shift of the day?

Solution Denote by N(·) the total arrival process of true and false alarms
together; by merging, it is a Poisson process with rate λ = 9. The question
is what is

P{
# alarms in the middle shift︷ ︸︸ ︷
N(2/3)−N(1/3) = 0,

# alarms in the 1st and 3rd shifts together︷ ︸︸ ︷(
N(1/3)−N(0)

)
+
(
N(1)−N(2/3)

)
= 3}?

We note that
- the numbers of alarms in the three shifts are independent because the shifts
do not overlap,
- the number of alarms in each of the three shifts ∼ Poi(λ ∗ 1/3) = Poi(3);
- due to independence and merging of Poisson random variables, the number
of alarms in the 1st and 3rd shift together ∼ Poi(3 + 3) = Poi(6).

Hence,the answer is

P (Poi(3) = 0) · P (Poi(6) = 3) = e−3 ∗ e−663

3!
= 36e−9.

Question 4. Consider a single-server system where potential customers ar-
rive according to a Poisson process with rate λ. If, upon arrival, a customer
finds i = 1, 2, . . . other customers in the system, then this customer joins
the queue with probability 1/(i + 1) or leaves immediately with probability
i/(i+1). A customer that arrives into an empty system immediately proceeds
to the server. The service times are distributed exponentially with rate µ.
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(a) [5pt] Argue that the number of customers in the system is a continuous-
time Markov chain. Intuitively, for which λ and µ is this system stable?

Solution Let L(t) be the number of customers in the system at time t,
t ≥ 0. This is a CTMC since all transitions take Exponential times accord-
ing to the diagram

0 1 2 3 . . . i . . .
λ λ/2 λ/3 λ/4 λ/i λ/(i+ 1)

µµµµµµ

Intuitively, this CTMC is stable for all λ and µ because, in large states,
the growth rate λ/i is smaller than the decay rate µ.

(b) [4pt] Find the occupancy distribution pocc in the stable scenario.

Hint: the Taylor expansion for the exponential function is ex =
∑∞

i=0

xi

i!
.

Solution This is an irreducible MC, and hence the system for pocc is
global balance for sets {0, . . . , i− 1}:
pi−1 ∗ λ/i = pi ∗ µ, i = 1, 2, . . .

normalization:
∑∞

i=0 pi = 1.

It follows that,

pi =
λ/µ

i
pi−1 =

λ/µ

i

λ/µ

i− 1
pi−2 =

λ/µ

i

λ/µ

i− 1

λ/µ

i− 2
pi−3

= . . . =
λ/µ

i

λ/µ

i− 1

λ/µ

i− 2
. . . . . .

λ/µ

1
p0 =

(λ/µ)i

i!
p0, i ≥ 1, automatically holds for i = 0

which we plug into the normalization equation and get

1 = p0

∞∑
i=0

(λ/µ)i

i!
= p0e

λ/µ ⇔ p0 = e−λ/µ.

Hence,

pocci = e−λ/µ
(λ/µ)i

i!
, i ≥ 0.

Note that the balance and normalization equations have a solution / pocc

exists for any λ and µ. This confirms the intuition on the stability condition
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from part (a).

(c) [3pt] Express the fraction of lost customers in terms of the proba-
bilities pocci . You do not have to further plug in the formulas for pocc that you
found in (b).

Solution By PASTA, fraction pocci of potential customers upon their ar-
rival find i other customers already in the system. Out of customers who,
upon arrival, find i other customers already in the system, fraction i/(i+ 1)
leaves immediately (i.e. they are lost). Hence, in total the fraction of lost
customers is

∞∑
i=1

pocci
i

i+ 1
.

Question 5. Jobs arrive at a server according to a Poisson process of rate
λ = 1/3 and are served in the order of arrival. For 1/4 of the jobs, their
service times have a normal N(4, 12) distribution. The remaining 3/4 of the
jobs require a fixed service time 2.

(a) [5pt] Find the average waiting time EW .

Solution This is an M/G/1 system with arrival rate and service time

λ = 1/3, B =

{
N(4, 12), wp 1/4,

2, wp 3/4.

Since the order of service is FIFO, the Pollaczek-Khinchine formula applies,

EW =
ρ

1− ρ
· E(B2)

2E(B)
.

We have

E(B) = 1
4
∗

4︷ ︸︸ ︷
E(N(4, 12)) +3

4
∗ 2 = 5/2,

E(B2) = 1
4
∗ E(N(4, 12))2︸ ︷︷ ︸

=V+(E)2=12+42=17

+3
4
∗ 22 = 29/4,

ρ = λE(B) = 1/3 ∗ 5/2 = 5/6,

and hence

EW =
5/6

1/6
· 29/4

2 ∗ 5/2
= 29/4 = 7.25.
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For part (b), consider a new situation where the server requires start-up
times of fixed duration 3. That is, when, after an idling period with no jobs
to do, the server receives a job, it will only start serving that job 3 time units
later.
You can use without proof the fact that the system with such start-up times
is still stable, and hence the long-run fraction of time that the server is busy
serving jobs is given by ρ. Moreover, denote by Πidle the long-run fraction of
time that the server is idling with no jobs to do, and denote by Πstart-up the
long-run fraction of time that the server is starting-up.

(b) [6pt] Find the average waiting time EW in this new situation by doing
Mean Value Analysis.
Hint: in the arrival relation, consider what an arriving job has to wait for if
it arrives when the server is idling, when the server is starting-up, and when
the server is busy serving another job. You can leave Πidle and Πstart-up as
they are in your solution, you do not have to calculate them.

Solution The MVA equations are:{
Little’s law ELq = λ · EW,
arrival relation EW = Πidle · 3 + Πstart-up · ER

∣∣
X=3

+ ρ · ER
∣∣
X=B

+ ELq · EB.

The arrival relation above comes up as follows:
- Proportion Πidle of jobs (by PASTA) arrive while the server is idling with
no jobs to do. Such a job first has to wait for the full start-up time 3.
- Proportion Πstart-up of jobs (by PASTA) arrive while the server is starting
up. Such a job first has to wait for the remaining start-up time. Consulting
the formula sheet, the average remaining start-up time is ER where we plug
in X = 3:

ER
∣∣
X=3

=
E(32)

2E(3)
=

9

2 · 3
=

3

2
.

- Proportion ρ of jobs (by PASTA) arrive while the server is busy serving
another job. Such a job first has to wait for the remaining service time in
progress. From (a) we know ρ = 5/6. To calculate the average remaining
service time, we use the values of E(B2), E(B) that we found in (a):

ER
∣∣
X=B

=
E(B2)

2E(B)
=

29/4

2 · 5/2
=

29

20
.

9



- Then each job will have to wait for the full service times of the queue in
front of it.

To solve the MVA equations, we plug the Little’s law into the arrival re-
lation and get

EW = Πidle · 3 + Πstart-up ·
3

2
+

5

6
· 29

20
+

5

6
· EW,

⇒ 1

6
· EW = Πidle · 3 + Πstart-up ·

3

2
+

5

6
· 29

20
,

⇒ EW = 18Πidle + 9Πstart-up + 29/4.
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2B)E(B), where c2B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.
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