
SOLUTIONS
Final exam Stochastic Modelling

December 20, 2023

Question 1. Two auto mechanics, a senior one and a junior one, do car re-
pairs in a three-car garage. Cars drop by this garage according to a Poisson
process at a rate 3 cars per day. If a car drops by a full garage, it leaves
immediately to seek service elsewhere. If a car drops by an empty garage,
it is handled by the junior mechanic. If a car drops by while one of the
mechanics is vacant, it is handled by that mechanic. If a car drops by while
both mechanics are busy but the third spot in the garage is available, that
car is taken into the garage and, as soon as one of the mechanics becomes
vacant, it will be handled by that mechanic. The repair times are distributed
exponentially, with rate 2 cars per day for the senior mechanic and 1 car per
day for the junior mechanic.

(a) [4pt] Formulate a CTMC based on which you can answer the subse-
quent parts of the question.
Hint: When there is a single car in the garage, is additional information
required to determine the next state of the CTMC?

Solution Let X(t) be the number of cars in the garage at time t if that
number is different than 1. In case of exactly 1 car in the garage at time
t, let X(t) also specify which mechanic is handling that car (J standing for
junior and S for senior). Then X(t) is a CTMC with the transition diagram
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(b) [5pt] What fraction of time is (i) the senior mechanic vacant, (ii) the
junior mechanic vacant? You can use without derivation the fact that the
garage is full for 5

17
of the time.

Solution Since X(·) is an irreducible CTMC on a finite state space, the occu-
pancy distribution exists and solves the balance and normalization equations
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(we use balance per state):

p0 ∗ 3 = p1J ∗ 1 + p1S ∗ 2, 4) 3p0 = 4
5
p3 + 2

5
p3 = 6

5
p3 ⇒ p0 = 2

5
p3

p1J ∗ 4 = p0 ∗ 3 + p2 ∗ 2, 3) plug in the above equation⇒ 4p1J = p1J + 2p1S + 2p2

p1J ∗ 4 = p0 ∗ 3 + p2 ∗ 2, ⇒ 3p1J = 2
5
p3 + 2p3 = 12

5
p3 ⇒ p1J = 4

5
p3

p1S ∗ 5 = p2 ∗ 1, 2) p1S = 1
5
p2 = 1

5
p3

p2 ∗ 4 = p1J ∗ 3 + p1S ∗ 3 + p3 ∗ 3,

p3 ∗ 3 = p2 ∗ 3 1) p2 = p3

p0 + p1J + p1S + p2 + p3 = 1.

It is given that pocc3 = 5
17

, so we express all other occupancy probabilities via
pocc3 and get the full occupancy distribution

pocc0 =
2

17
, pocc1J =

4

17
, pocc1S =

1

17
, pocc2 =

5

17
, pocc3 =

5

17

To answer the questions,
(i) the fraction of time the senior server is vacant is pocc0 + pocc1J = 6

17
,

(ii) the fraction of time the junior server is vacant is pocc0 + pocc1S = 3
17

.

(c) [2pt] What fraction of cars dropping by this garage (i) leave with-
out repair, (ii) experience waiting before repair?

Solution In (i), we want the fraction of cars that pass by and see a full
garage. By PASTA, it is pocc3 = 5

17
.

In (ii), we want the fraction of cars that pass by and see 2 cars in the garage.
By PASTA, it is pocc2 = 5

17
.

(d) [2pt] What is the time-average number of cars in this garage?

Solution It is

pocc0 ∗ 0 + (pocc1J + pocc1S ) ∗ 1 + pocc2 ∗ 2 + pocc3 ∗ 3 =
4 + 1 + 5 ∗ 2 + 5 ∗ 3

17
=

30

17
.

Question 2. Consider an M/M/3 system with impatient customers. The
rate of arrival attempts is λ. An arriving customer that would have to wait
to get service joins the queue with probability α or immediately leaves the
system with probability 1− α. The service rate is µ at each of the servers.
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(a) [4pt] Argue that the number of customers in this system is a CTMC.
Argue intuitively for which λ, α and µ this CTMC is stable.

Solution L(t) = number of customers in the system at time t is a CTMC
with the transition diagram

0 1 2 3 4 . . . i−1 i . . .
λ λ λ λα λα λα λα

µ 2µ 3µ 3µ 3µ 3µ

Intuitively, the system is stable if departures are faster than arrivals in large
states, i.e. this system is stable if

λα < 3µ.

(b) [4pt] Find the occupancy distribution pocc. In particular derive that

pocc0 =

1 + λ/µ+
(λ/µ)2

2
+

(λ/µ)3

6

1

1− αλ

3µ


−1

.

Hint: For normalisation, group states i ≥ 3.

Solution Below we find a solution to balance and normalization equations.
This solution is pocc since L(t) is an irreducible CTMC.

The system for pocc is,

balance for set {0} p0 ∗ λ = p1 ∗ µ,
balance for set {0, 1} p1 ∗ λ = p2 ∗ 2µ,

balance for set {0, 1, 2} p2 ∗ λ = p3 ∗ 3µ,

balance for set {0, . . . , i− 1} pi−1 ∗ λα = pi ∗ 3µ, i ≥ 4,

normalization
∑∞

i=0 pi = 1.

Hence,

p1 =
λ

µ
p0, p2 =

λ

2µ
p1 =

(λ/µ)2

2
p0, p3 =

λ

3µ
p2 =

(λ/µ)3

6
p0,

and for i ≥ 4,

pi =
λα

3µ
pi−1 =

(
λα

3µ

)2

pi−2 = . . . =

(
λα

3µ

)i−3

p3 =
(λ/µ)3

6

(
λα

3µ

)i−3

p0 (also true for i = 3).
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Now we follow the hint for the normalization equation and get

1 =
∞∑
i=0

pi =
2∑
i=0

pi +
∞∑
i=3

pi = p0

(
1 + λ/µ+

(λ/µ)2

2
+

(λ/µ)3

6

∞∑
i=3

(λα
3µ

)i−3

︸ ︷︷ ︸
=
∑∞
j=0(

λα
3µ

)j=
1

1−λα
3µ

)
.

To summarize, the last derivation implies that pocc0 is as given in the question,
and

pocc1 =
λ

µ
pocc0 , pocc2 =

(λ/µ)2

2
pocc0 ,

for i ≥ 3, pocci =
(λ/µ)3

6

(
λα

3µ

)i−3

p0.

(c) [4pt] Denote by Πloss the fraction of customers lost due to impatience.
Denote by ΠW the fraction of customers that experience waiting out of those
customers that join the system. Knowing the occupancy distribution, how
can you find Πloss and ΠW ?
Remark: Expressions in terms of pocc are sufficient; you do not have to fur-
ther plug in the formulas for pocc that you found in (b).

Solution Fraction pocci of arrival attempts see i customers in the system,
by PASTA.

Lost due to impatience are those arrival attempts who would have to wait,
because see i ≥ 3 customers in the system, but do not wish to wait, with
probability 1− α. Hence,

Πloss =

(∑
i≥3

pocci

)
(1− α) = (1− α)(1− pocc0 − pocc1 − pocc2 ).

Customers that experience waiting are those who, upon arrival, see i ≥ 3
customers in the system and are willing to wait, with probability α. Cus-
tomers that join the system are those who are not lost. We should pick those
who experience waiting out of those who join the system, i.e.

ΠW =

(∑
i≥3 p

occ
i

)
α

1− Πloss

=
α(1− pocc0 − pocc1 − pocc2 )

1− Πloss

.
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(d) [4pt] Find the time-average number of customers waiting in the queue
by doing Mean Value Analysis.
Remark: If you need to make use of Πloss and ΠW as defined in (c), you can
use them as they are, without plugging in the formulas you found for them
in (c).

Solution The MVA equations are:Little’s law ELq = λeff ∗ EW = λ(1− Πloss) ∗ EW,

arrival relation EW = ΠW ∗
1

3µ
+ ELq ∗ 1

3µ
.

In the Little’s law, we need the effective arrival rate into the system, i.e., we
need the arrival attempts that are not lost.

In the arrival relation, the logic is as follows:
- Proportion ΠW of customers that join the system will have to wait. First
of all, an arrival that has to wait will wait for a service completion among
the three residual service times at the servers. Due to the memorylessness,
that will take an Exponential(3µ) amount of time, in expectation 1

3µ
.

- A new arrival sees Lq customers in the system and, after the very first
service completion discussed in the previous bullet, Lq more service comple-
tions are necessary for the new arrival to reach a free server. Each service
completion, again, takes an Exponential(3µ) amount of time, in expectation
1

3µ
.

We plug in the Little’s law into the arrival relation and get

EW = ΠW ∗
1

3µ
+ λ(1− Πloss) ∗ EW ∗

1

3µ
⇒ EW =

ΠW
3µ

1− λ(1−Πloss)
3µ

.

(e) [3pt] Assume the arrival process is still Poisson with rate λ but the
service time distribution has changed to non-exponential while the mean ser-
vice time remains the same, 1/µ. Does the system still have the occupancy
distribution that you found in (b) in case (i) α = 0 (no customers are willing
to wait), (ii) α = 1 (all customers are willing to wait)?

Solution In (i), we have an M/G/c/c system, with c = 3. This system
is insensitive to the service time distribution and has the same pocc as found
in (b).
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In (ii), we have an M/G/c system, with c = 3. This system is sensitive
to the service time distribution and does not have the same pocc as found in
(b).

Question 3. Consider two data transmission channels between the same
source and destination. At present, the two channels do not interact but
each channel handles a specific type of packages on its own. Channel 1
receives type-1 packages according to a Poisson process of rate λ1 and trans-
mits them in the FIFO order; their transmission times are distributed as B1.
Channel 2 receives type-2 packages according to a Poisson process of rate λ2

and transmits them in the FIFO order as well; their transmission times are
distributed as B2. It needs investigation whether it would be beneficial to
merge the two channels. The two channels are not of equal capacities and,
under merging, the transmission times would become 1

4
B1 for type-1 pack-

ages and 3
4
B2 for type-2 packages.

It is known that λ1 = 0.2, EB1 = 4, VB1 = 1, λ2 = 0.1, EB2 = 8, VB2 = 4
(where V stands for the variance). The average transmission delay (i.e., the
time between the moment the package is received at the channel and the mo-
ment its transmission starts) is presently 8.5 at channel 1 and 17 at channel 2.

(a) [4pt] What is going to be the average transmission delay at the merger
channel if it transmits in the FIFO order?
Hint: Be reminded that, for a random variable X and constant a, E((aX)2) =
a2E(X2).

Solution This is an M/G/1 system with arrival rate and service time

λ = λ1 + λ2 = 0.3, B =

{
1
4
B1, wp λ1

λ1+λ2
= 2

3
,

3
4
B2, wp λ2

λ1+λ2
= 1

3
.

Since the order of service is FIFO, the Pollaczek-Khinchine formula applies,

EW =
ρ

1− ρ
· E(B2)

2E(B)
.

We have (for E(B2), we use the hint)

E(B) = 2
3
∗ E(1

4
B1) + 1

3
∗ E(3

4
B2) = 1

6
EB1 + 1

4
EB2 = 1

6
· 4 + 1

4
· 8 = 8

3
,

E(B2) = 2
3
∗ E(1

4
B1)2 + 1

3
∗ E(3

4
B2)2 = 2

3
(1

4
)2 ∗ E(B2

1)︸ ︷︷ ︸
=V+(E)2=1+42=17

+1
3
(3

4
)2 ∗ E(B2

2)︸ ︷︷ ︸
=V+(E)2=4+82=68

≈ 13.458

ρ = λE(B) = 0.3 ∗ 8
3

= 0.8,
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and hence

EW ≈ 0.8

0.2
· 13.458

2 ∗ 8/3
≈ 10.094.

(b) [4pt] Would the merging be beneficial for the transmission times, for
the transmission delays, and for the total time a package spends at the trans-
mission channel?

Solution The transmission times are shorter after merging: 1
4
B1 < B1,

3
4
B2 < B2. So the merging is beneficial for the transmission times of both

types of packages.

The average transmission delays (waiting times) of type-1 packages before
merging, of type-2 packages before merging, and of both types of packages
after merging are

EW1 = 8.5, EW2 = 17, EW ≈ 10.094.

So, the merging is not beneficial for the transmission delays of type-1 pack-
ages and it is beneficial for the transmission delays of type-2 packages.

The average total times (sojourn times) of type-1 packages before and af-
ter merging are

ES1 = EW1 + EB1 = 8.5 + 4 = 12.5,

ES1,merge = EW + 1
4
EB1 ≈ 10.094 + 1

4
· 4 = 11.094,

and the average total times (sojourn times) of type-2 packages before and
after merging are

ES2 = EW2 + EB2 = 17 + 8 = 25,

ES2,merge = EW + 3
4
EB2 ≈ 10.094 + 3

4
· 8 = 16.094.

So, the merging is beneficial for the total times at the channel for both types
of packages.

(c) [2pt] Would your conclusions from (b) still hold if, instead of transmis-
sion in the FIFO order, the next message to transmit is selected at random
from the queue?

Solution Yes the conclusions from (b) still hold:
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- the transmission times are not affected by the new discipline at all,
- the average transmission delays are still the same because the alternative
discipline is work-conserving, non-size-based, and non-preemtive and hence
the PK formula still applies;
- the average total times at the channel are still the same due to the previous
two bullets.

(d) [3pt] For channel 1 before merging, find the expected stretch of time
during which the channel is continuously transmitting packages (between two
periods of having no packages to transmit).

Solution Channel 1 before merging is an M/G/1-FIFO system and the
question is what is its mean busy period, we denote it by E(BP1). From the
formula sheet,

E(BP1) =
EB1

1− ρ1︸︷︷︸
=λ1EB1

=
4

1− 0.2 ∗ 4
= 20.
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2

B)E(B), where c2
B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.
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