
SOLUTIONS
Resit Stochastic Modelling

February 13, 2023

Question 1. Consider a discrete-time Markov chain on the state space
{1, 2, 3, 4, 5, 6} with transition matrix

P =



0 1
3

0 0 0 2
3

0 0 1
3
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3
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3
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3

0 0 2
3

0 0

0 0 0 0 1 0


.

(a) [5pt] (i) Is it correct, that a limit distribution exists for all initial
states X0 = i, i = 1, 2, . . . , 6? (ii) For which of the initial states X0 = i,
i = 1, 2, . . . , 6, does an occupancy distribution exist? Find the occupancy
distribution if it exists.

Solution Looking at the transition diagram
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there are two communicating classes:

- {1,2,5,6} is transient,

- {3,4} is absorbing, has period 2.

(i) No, the statement is incorrect. Due to the periodicty, no limit distribution
exists e.g. for X0 = 3.
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(ii) For any initial state, the MC ends up in the absorbing class {3, 4}, which
has (1/2, 1/2) as its occupancy distribution, for symmetry reasons. I.e., for
any initial state X0 = i, i = 1, 2, . . . , 6, the occupancy distribution exists and
is given by

πocc = (0, 0, 1/2, 1/2, 0, 0).

(b) [3pt] Assume the initial state is 1. Find the probability that the Markov
chain will ever reach state 6.

Solution The question is what is q1, where

qi := P (ever reach 6 | X0 = i).

By conditioning on the 1st step we get the system
q1 = 1

3
q2 + 2

3
∗ 1,

plug in q2
= 1

3
(1
3
q5 + 1

3
) + 2

3

plug in q5
= 1

3
(1
9
q1 + 1

3
) + 2

3
= 1

27
q1 + 7

9

q2 = 1
3
∗ 0 + 1

3
q5 + 1

3
∗ 1,

q5 = 1
3
q1 + 2

3
∗ 0.

Finally, q1 = 1
27
q1 + 7

9
gives q1 = 21/26.

Question 2. An employee handles a certain type of tasks which come up
at most once per day. For efficiency reasons, the employee prefers to handle
such tasks in batches of two but sometimes he handles just a single task. To
be precise, on any given day, independently of the previous days, a single
task comes up with probability 1/2 or no task comes up with probability
1/2. A newly generated task is never handled on the same day, it will be
handled the next day or later. If, at the end of a day, there is a single open
task, the employee handles it the next day with probability 1/5. Otherwise,
the employee will wait till a second task comes up and then handle the two
tasks together the day after. Each decision on whether to wait for a second
task is independent from previous such decisions.

(a) [5pt] Argue that the numbers of open tasks at the end of each day
form a discrete-time Markov chain.

Solution Let by Xn be the number of open tasks at the end of day n,
n ≥ 0. This is a DTMC with transition diagram
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To explain some of the transition probabilities,

- p10 = 1
5
· 1
2

corresponds to the employee handling the single task next
day and no new task coming up next day,

- p11 = 1
5
· 1
2

+ 4
5
· 1
2

= 1
2

corresponds to the employee handling the single
task next day and a new task coming up next day OR the employee
not handling the single task next day and no new task coming up next
day,

- p12 = 4
5
· 1
2

corresponds to the employee not handling the single task
next day and a new task coming next day,

- note that p11 can also be calculated as p11 = 1− p10 − p12 = 1
2
,

- as for transitions out of 2, the employee will for sure handle the 2 tasks
next day and hence it only matters whether the new task comes up
next day.

The Markov property follows from the independence of the task arrivals and
the employee’s decisions about the single tasks. We also have the time-
homogeneity as the transition probabilities do not depend on time n.

(b) [4pt] Calculate the fraction of days that end with exactly one open task.

Solution The question is what is πocc1 .

Since this MC is irreducible and has a finite state space, it has a πocc, which
is determined by the system

balance π0
1
2

= π1
1
2
· 1
5

+ π2
1
2
,

π1
1
2

= π0
1
2

+ π2
1
2
, 2) π1 = π0 + π2 ⇒ π0 = π1 − π2 = π1

3
5

π2 = π1
1
2
· 4
5
, 1) π2 = π1

2
5

norm π0 + π1 + π2 = 1 3) (3
5

+ 1 + 2
5
)π1 = 1⇒ π1 = 1

2
.
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Hence, the final answer to (b) is πocc1 = 1
2
.

Also, as will be relevant for (c), the full occupancy distribution is

πocc = ( 3
10
, 1
2
, 1
5
).

(c) [3pt] An employee completes a single task in 2 hours and a batch of
two tasks in 3 hours. Calculate the amount of time the employee spends on
average per day on this type of tasks.

Solution We will view the hours the employee will be spending the next
day as costs. The generic costs in each state are:

C0 = 0, C2 = 3,

C1 =

{
2 wp 1/5, if decides to work on the single task next day

0 wp 4/5, otherwise

Hence the long-run average costs per day, or time spend per day, is

πocc0 EC0 + πocc1 EC1 + πocc2 EC2 = 0 + 1
2
· (2 · 1

5
) + 1

5
· 3 = 4

5
hr = 48 min.

Question 3. A small supermarket has two checkouts. Customers arrive
to the checkout area according to a Poisson process with rate λ per hour.
Regardless of the queue sizes in front of the two checkouts, each customer
chooses the 1st checkout with probability 2/3 (and the 2nd checkout with
probability 1/3).

(a) [5pt] Determine the joint probability that at least two customers ar-
rive to the first checkout between 9:00 and 11:00 but no customers at all
arrive to the checkout area between 9:30 and 10:00.

Solution Let
- N(t), t ≥ 0 denote the total arrival process to the checkout area,
- N1(t), t ≥ 0 denote the arrival process to the 1st checkout. By thinning,
this is a Poisson process, too, with rate 2

3
λ.
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The question is what is

P (N1(9, 11] ≥ 2, N(91
2
, 10] = 0)

= P (N1(9, 9
1
2
] +N1(10, 11] ≥ 2, N(91

2
, 10] = 0) ind. on disjoint intervals

= P (N1(9, 9
1
2
] +N1(10, 11] ≥ 2) ∗ P (N(91

2
, 10] = 0) merge ind. Poi. r.v.’s in the 1st probability

= P (Poi(2
3
λ · 1

2
+ 2

3
λ · 1︸ ︷︷ ︸

=λ

) ≥ 2) ∗ P (Poi(λ · 1
2
) = 0)

=
(
1− P (Poi(λ) ≥ 1)

)
∗ P (Poi(λ · 1

2
) = 0) =

(
1− e−λ(1 + λ)

)
∗ e−λ/2.

The service times at the 1st checkout follow an exponential distribution with
rate 12 per hour; the service times and the 2nd checkout follow an expo-
nential distribution with rate 8 per hour. When you and your friend arrive
to the checkout area, two customers are already being served, one at each
checkout. You queue up for the 1st checkout, your friend for the 2nd.

(b) [5pt] (i) What is the probability that you will start checking out be-
fore your friend? (ii) What is the probability that you will finish checking
out before your friend?

Solution We refer to the customer served at checkout 1 as A, and the
customer served at checkout 2 as B, and the friend as F. I.e., when me and
the friend arrive, the queues look as follows:

1, rate 12: A 2, rate 8: B

1, rate 12: I 2, rate 8: F

In (i), the answer is

P ( A︸︷︷︸
∼Exp(12)

wins from B︸︷︷︸
∼Exp(8)

) =
12

12 + 8
=

3

5
.

(ii) happens in the following three scenarios (they are disjoint, that is why
we will add up their probabilities):
- A wins from B, then I win from (the remaining) B,
- A wins from B, then I loose to (the remaining) B, then (the remaining) I
win from F,
- A looses to B, then (the remaining) A wins from F, then I win from (the
remaining) F.
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Using the memoryless property of the exponential distribution, the answer to
(ii) can be computed as

P (Exp(12) wins Exp(8)) · P (Exp(12) wins Exp(8))

+ P (Exp(12) wins Exp(8)) · P (Exp(12) looses Exp(8)) · P (Exp(12) wins Exp(8))

+ P (Exp(12) looses Exp(8)) · P (Exp(12) wins Exp(8)) · P (Exp(12) wins Exp(8))

=
3

5
· 3

5
+

3

5
· 2

5
· 3

5
+

2

5
· 3

5
· 3

5
=

81

125
.

Question 4. In addition to its standard ambulances, a region wants to in-
vest into specialised ambulances called Mobile Intensive Care Units (MICU),
which are better suited for transportation of patients in a critical condition.
Data show that such transportations requests (IC transportation requests)
arrive according to a Poisson process with an average of 16 patients per day
and the total duration to transport a patient approximately follows an ex-
ponential distribution with an average of 2 hours.

For starters, the region has bought one MICU. IC transportation requests
get assigned to this MICU unless it is occupied and there are already 2 other
patients waiting for it. (IC transportation requests that are rejected by the
MICU, are carried out by the standard ambulances.)

(a) [4pt] Argue that the number of IC transportation requests assigned
to the MICU is a continuous-time Markov chain.

Solution IC transportations have
- arrival rate λ = 16/24 p/hr = 2/3 p/hr,
- service rate µ = 1/2 p/hr.

Let L(t) be the number of requests assigned to the MICU at time t, in-
cluding the patient being transported and up to 2 patients waiting. It is a
CTMC with transition diagram

0 1 2 3

λ = 2/3 2/3 2/3

µ = 1/2 1/2 1/2
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I.e., this is an M/M/1/3 model.

(b) [5pt] (i) Find the fraction of time the MICU is idling. (ii) Find the
fraction of IC transportation requests rejected by the MICU.

Solution The question is what is (i) pocc0 , (ii) by PASTA, pocc3 . Since L(·)
is an irreducible CTMC on a finite state space, the occupancy distribution
exists and solves the balance and normalization equations:

p0 ∗ 2
3

= p1 ∗ 1
2
, balance for state 0

p1 ∗ 2
3

= p2 ∗ 1
2
, balance for set {0, 1}

p2 ∗ 2
3

= p3 ∗ 1
2
, balance for set {0, 1, 2}∑4

i=0 pi = 1.

From the balance equations it follows that pi = (4
3
)ip0 and then the normal-

ization equation gives pocc = ( 27
175
, 36
175
, 48
175
, 64
175

).

I.e. the answers are (i) 27/175, (ii) 64/175.

(c) [4pt] Give the Little’s law for the requests that (got assigned to the
MICU) but have to wait for the MICU. Use the Little’s law to calculate the
average waiting time among those who get assigned to the MICU.

Solution Of all IC transportation requests, fraction 1 − pocc3 get assgined
to the MICU and hence, the Little’s law is

ELq = λ(1− pocc3 )EW.

Then

EW =
ELq

λ(1− pocc3 )
=

1 ∗ pocc2 + 2 ∗ pocc3

λ(1− pocc3 )

(b)
=

(48 + 2 ∗ 64)/175

2/3 ∗ (175− 64)/175
=

88

37
hr ≈ 2.38 hr ≈ 2hr 23 min.

Question 5. Customers arrive to a single-server system according to a Pois-
son process of rate λ; they are served in the order of arrival. The service
of each customer consists of two consecutive stages, both distributed expo-
nentially, the rate is µ1 for the 1st stage and µ2 for the 2nd stage. You can
assume independence between the two stages of a service time.
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(a) [2pt] Under what condition on λ, µ1, and µ2 is this system stable?

Solution This is an M/G/1 system with arrival rate λ and service time
B = B1 +B2, where B1 ∼ Exp(µ1) and B2 ∼ Exp(µ2) are independent. The
stability condition is

ρ := λEB < 1, i.e., λ(
1

µ1

+
1

µ2

) < 1.

(b) [4pt] For λ = 1 and µ1 = µ2 = 4, find the customer-average waiting
time.
Reminder: For a random variable X ∼ Exponential(α), the variance is 1/α2.
For independent random variables, the variance of the sum is the sum of the
variances.

Solution Since the order of service is FIFO, the Pollaczek-Khinchine for-
mula applies,

EW =
ρ

1− ρ
· E(B2)

2E(B)
.

We have

E(B) = 1
4

+ 1
4

= 1/2,

E(B2) = VB︸︷︷︸
=VB1+VB2

+(EB)2 = 1
16

+ 1
16

+ 1
4

= 3/8,

ρ = λE(B) = 1 ∗ 1/2 = 1/2,

and hence

EW =
1/2

1/2
· 3/8

2 ∗ 1/2
= 3/8.

(c) [5pt] Assume arbitrary λ, µ1, and µ2 rather than the values from (b).
Model the system as a continuous-time Markov chain.

Solution Let

X(t) = (# customers present, stage in service) at time t.

This is a CTMC with transition diagram
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(1, 1) (2, 1) (3, 1) . . .

(0,−)

(1, 2) (2, 2) (3, 2) . . .

µ1

λ

µ2

(with all
λ

,
µ1

,
µ2

).
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2B)E(B), where c2B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.
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