SOLUTIONS
Final exam Stochastic Modelling
December 21, 2022

Question 1. Consider an M/M/2/4 system where customers (attempt to)
arrive at rate A = 2 and each of the two servers has service rate p = 1. Recall
that, next to the two spots at the servers, this system only has two spots in
the waiting room. Those customers which, upon arrival, do not find a free
server or a free spot in the waiting room are lost.

(a) [2pt] Formulate a CTMC based on which you can answer the subse-
quent parts of the question.

Solution L(t) = number of customers in the system at time ¢ is a CTMC
with the transition diagram
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(b) [5pt] What is the fraction of time that each of the following situations
occur: (i) the system is empty, (ii) the waiting room is full?

occ occ

Solution The question is what is (i) p§®, (i) p3®. Since L(-) is an irre-
ducible CTMC on a finite state space, the occupancy distribution exists and
solves the balance and normalization equations:

(

po*x2=p; x1, balance for state 0

p1 %2 =py*x2, balance for set {0,1}

po %2 =p3*2, balance for set {0,1,2}
ps* 2 =pgx2, balance for set {0,1,2,3}

4
| Xiopmi=1

From the balance equations it follows that p; = ps = p3 = ps = 2pg and then

the normalization equation gives p = (3, 2,2, 2, 2).

Le. the answers are (i) 1/9, (ii) 2/9.



(c) [2pt] What fraction of customers are lost and why?
Solution By PASTA it is pj® = 2/9.

(d) [2pt] What is the time-average number of customers in the waiting
room?

Solution It is FL? = p§“x 1+ pi*2=6/9 =2/3.

(e) [4pt] Now assume that the 2 servers are not identical: one is faster
and the other is slower. The service times at the fast server are distributed
exponentially with rate py; = 1.5, and at the slow server - exponentially with
rate ps = 0.5. A customer only has a choice which server to go to if that
customer arrives into an empty system; in that case the customer goes to
the fast server. In all other cases, the customer goes to whichever server is
available at the moment. Model this new situation as a CTMC.

Hint: this new situation requires one state more than the original situation.

Solution Let X(¢) be the number of customers in the system at time ¢
if that number is different than 1. In case of exactly 1 customer in the sys-
tem let X () be the occupied server at time ¢. Then X(¢) is a CTMC with
the transition diagram
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Question 2. Consider a channel that transmits packages one at a time and
has an infinite buffer (i.e., an infinite queue for packages). The packages are
generated according to a Poisson process of rate A; all transmission times
are independent and distributed exponentially with rate p. There is also a
patience threshold K, meaning: if a new package is generated when there are
already K or more packages at the channel (including the package currently
in transmission), then the new package remains at this channel with proba-
bility p or gets rerouted elsewhere with probability 1 — p.



(a) [4pt] Argue that the number of packages at the channel (in total in
transmission and in the buffer) is a CTMC.

Solution L(t) = number of packages at the channel at time ¢ is a CTMC
with the transition diagram
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(b) [2pt] Argue intuitively what is the stability condition for this CTMC.
In particular, does the specific value of K matter?

Intuitively, this CTMC is stable when, in large states, the growth rate is
slower than the decay rate. Hence, the stability condition is

Ap <

and the specific value of K does not matter.

(c) [5pt] Find the limit and occupancy distribution. In particular, derive
that

K-1 -
lim occ A (A/:U’)K
0 0 ;( /1) 1— \o/u

Hint: For normalisation, group states ¢ > K.

Solution Below we find a solution to balance and normalization equations.
This solution is both p"™ and p°* since L(t) is an irreducible CTMC.

The system for p"™ and p° is,

balance for sets {0,...,7 — 1}:
pi—l*A:pi*N; ’izl,...7K7
Dic1kAp=p;ixp, 1=K+1,K+2,...

normalization: Y > p; = 1.

Hence, fori=1,..., K,

A

Di = ﬁpi—l = (ﬁ)Qpi—Q == (“)ipo (also true for i = 0),
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and for i > K + 1,

pi = %pi—l - (%)2171'4 == (%)FKPK = (%)F}((ﬁ)KPO (also true for i = K).

Now we follow the hint for the normalization equation, plug the black and
red relations in there, and get

1222%:Z_prl-Zpl:pO(Z_(ﬁ)Z_i_(ﬁ)K Z(%)FK )
= ' ' i=0 =K

o Apy,_ 1
=220 Y =10

l

To summarize, the last derivation implies that p™ = pi™ are as given in the

question, and

for,l::O’]‘7"'7K7 pocczpizm:( )ipgcc7

(2

A
o
fori > K +1, pi=pl™ = (2)'p"*pg.

(d) [4pt] Derive the fraction of rerouted packages based on your answer
to (c¢). In particular, if you obtained the correct answer in (c), you should
obtain the fraction of rerouted packages

Hloss = (]- _p)Mpocc

1= Ap/u™"
Solution Proportion p“ of packages are generated when there are ¢ other
packages in the system, by PASTA. Out of packages generated into the system
with ¢ > K other packages, proportion 1 — p get rerouted. Hence, the
proportion of rerouted packages is given by

occ

ss = (1 —p) Z p? mnow use the red relation from (c)
i=K
_ . Ap\i—K MK
—(1-p) (Zm )(,) ”
i=K

1
=Tw/n from (c)

L.e. the formula for 11, is indeed as given.

Question 3. Jobs arrive at a server according to a Poisson process of rate
A = 1/3. For 1/4 of the jobs, their service times have a normal N(4,1?)
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distribution. The remaining 3/4 of the jobs require a fixed service time 2.

(a) [5pt] Assume the FIFO discipline at the server and find the average
waiting time EWV.

Solution This is an M/G/1 system with arrival rate and service time

N(4,1%), wp 1/4,

A=1/3, B=
/ {2, wp 3/4.

Since the order of service is FIFO, the Pollaczek-Khinchine formula applies,

2
g~ L EB)
1—p 2E(B)
We have
/—/4%
E(B) =1xE(N(4,1%)+2 x2 =5/2,
E(B*) =1 E(N(4,1%)* +3x2>=29/4,
=V+(E)2=12442=17
p=ME(B)=1/3%5/2=5/6,
and hence 5/6 20/4
EW = —‘~—. =29/4 =7.25.
W=17% 3xp2 = 204=72

(b) [3pt] The system under consideration is the result of pooling. Previ-
ously, the varying-size jobs and fixed-size jobs were served at two separate
servers, each twice as slow as the server in the present system. Has the pool-
ing been beneficial for the fixed-sized jobs? Why yes or why not?

Solution Prior to pooling, the fixed-sized jobs at their own server formed
an M/G/1 model with arrival rate and service times

Ap=1/3%3/4=1/4, By=2x2=4

This system had load py = A\fEB; = 1/4 %4 = 1 and hence it was unstable.
The pooled system is stable and hence the pooling has been beneficial to the
fixed-sized jobs.

For questions (c) and (d) assume that, in the pooled system, the service dis-
cipline is not FIFO but instead the N (4, 1?)-sized jobs have a non-preemptive

b}



priority over the jobs of fixed size 2.

(c) [2pt] Is the Pollaczek-Khinchine formula applicable in this new situ-
ation in order to find the average waiting time across all jobs together? Why
yes or why not?

Solution The new discipline is size-based and hence the PK formula is not
applicable anymore.

(d) [5pt] Determine the average waiting time EW; of the high-priority
jobs by doing Mean Value Analysis for this group.

Solution The MVA equations are:

Little’s law EL] =X\ «EW7,
arrival relation EW;, = p*xER+ EL{*E(N(4,1%)).

In the Little’s law, we use the arrival rate of high-priority customers A\; =
1/3%x1/4=1/12.

In the arrival relation, we use
- the total load p = 5/6 (from (a)) which is also the fraction of time the

server is busy,

EB? 29/4
- the remaining service time in progress ER = SEE — 2% é/2 (from (a)).

The logic of the arrival relation is as follows:

- with probability p, a newly arriving high-priority customer finds the server
occupied (by PASTA) and has to wait for the residual service time in progress
ER,

- the service in progress can be a low- or high- priority customer, in either
case it is not going to be interrupted, that is why ER is based on all of the
customers, both high- and low- priority together,

- after waiting for the remaining service in progress, the new high-priority
customer has to wait for full service times of all high-priority customers in
the queue.

We plug in the Little’s law into the arrival relation and get
EW, = p* ER + A\; x EW; x E(N(4,1%)),

p

B 5/6 20/4  5/6 29/4 29
T 11—\ *E(N(4,12)) 2/3° 5

ER = _ _2
i 1-1/12%4 2%5/2 2/3 5 16
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FORMULA SHEET

Erlang distribution. If S, has an Erlang(n, 1) distribution, then
S e ()
_ —put _ —put
P(S, >1t) = gzo et X and fs,(t) = pe™*

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P(Rﬂﬁ):—/xP(X>u)du and E(R) =

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

_ P E<BQ)_1 P 2 2, _ V(B)
E(W) = = ,9E(B) 21— p(l + ¢3)E(B), where ¢ = D)
E(BP) = 1(TB;'

M/M/c queue. The probability of waiting ITy,, waiting time W and so-
journ time S satisfy

_— (cp)° /!
W = c—1 P/ ’
(1= p) Xiso(ep)'/il + (cp)e/c!
1
E =y ——— d P ) = [y e~ cr1=p)t
(W) Wc,u(l—p) an (W> ) w e ,
Iy (1 [Ty _
P(S>t)=—"" ¢ rll-nt l1—-— .
8> 0= = (1 )

M/G/¢/c queue. The blocking probability is

ac/c!

Ble.a) = s i

with a = A E(B) = ¢p.



