
SOLUTIONS
Final exam Stochastic Modelling

December 21, 2022

Question 1. Consider an M/M/2/4 system where customers (attempt to)
arrive at rate λ = 2 and each of the two servers has service rate µ = 1. Recall
that, next to the two spots at the servers, this system only has two spots in
the waiting room. Those customers which, upon arrival, do not find a free
server or a free spot in the waiting room are lost.

(a) [2pt] Formulate a CTMC based on which you can answer the subse-
quent parts of the question.

Solution L(t) = number of customers in the system at time t is a CTMC
with the transition diagram

0 1 2 3 4

λ = 2 λ = 2 λ = 2 λ = 2

µ = 1 2µ = 2 2µ = 2 2µ = 2

(b) [5pt] What is the fraction of time that each of the following situations
occur: (i) the system is empty, (ii) the waiting room is full?

Solution The question is what is (i) pocc0 , (ii) pocc4 . Since L(·) is an irre-
ducible CTMC on a finite state space, the occupancy distribution exists and
solves the balance and normalization equations:

p0 ∗ 2 = p1 ∗ 1, balance for state 0

p1 ∗ 2 = p2 ∗ 2, balance for set {0, 1}
p2 ∗ 2 = p3 ∗ 2, balance for set {0, 1, 2}
p3 ∗ 2 = p4 ∗ 2, balance for set {0, 1, 2, 3}∑4

i=0 pi = 1.

From the balance equations it follows that p1 = p2 = p3 = p4 = 2p0 and then
the normalization equation gives pocc = (1

9
, 2
9
, 2
9
, 2
9
, 2
9
).

I.e. the answers are (i) 1/9, (ii) 2/9.
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(c) [2pt] What fraction of customers are lost and why?

Solution By PASTA, it is pocc4 = 2/9.

(d) [2pt] What is the time-average number of customers in the waiting
room?

Solution It is ELq = pocc3 ∗ 1 + pocc4 ∗ 2 = 6/9 = 2/3.

(e) [4pt] Now assume that the 2 servers are not identical: one is faster
and the other is slower. The service times at the fast server are distributed
exponentially with rate µ1 = 1.5, and at the slow server - exponentially with
rate µ2 = 0.5. A customer only has a choice which server to go to if that
customer arrives into an empty system; in that case the customer goes to
the fast server. In all other cases, the customer goes to whichever server is
available at the moment. Model this new situation as a CTMC.
Hint: this new situation requires one state more than the original situation.

Solution Let X(t) be the number of customers in the system at time t
if that number is different than 1. In case of exactly 1 customer in the sys-
tem let X(t) be the occupied server at time t. Then X(t) is a CTMC with
the transition diagram

1F
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λ
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µ2
λ

µ1+µ2 µ1+µ2
λµ2

Question 2. Consider a channel that transmits packages one at a time and
has an infinite buffer (i.e., an infinite queue for packages). The packages are
generated according to a Poisson process of rate λ; all transmission times
are independent and distributed exponentially with rate µ. There is also a
patience threshold K, meaning: if a new package is generated when there are
already K or more packages at the channel (including the package currently
in transmission), then the new package remains at this channel with proba-
bility p or gets rerouted elsewhere with probability 1− p.
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(a) [4pt] Argue that the number of packages at the channel (in total in
transmission and in the buffer) is a CTMC.

Solution L(t) = number of packages at the channel at time t is a CTMC
with the transition diagram

0 1 2 . . . K−1 K K+1 K+2 . . . i . . .
λ λ λ λ λp λp λp λp

µµµµµµµ

(b) [2pt] Argue intuitively what is the stability condition for this CTMC.
In particular, does the specific value of K matter?

Intuitively, this CTMC is stable when, in large states, the growth rate is
slower than the decay rate. Hence, the stability condition is

λp < µ

and the specific value of K does not matter.

(c) [5pt] Find the limit and occupancy distribution. In particular, derive
that

plim0 = pocc0 =

[
K−1∑
i=0

(λ/µ)i +
(λ/µ)K

1− λp/µ

]−1
.

Hint: For normalisation, group states i ≥ K.

Solution Below we find a solution to balance and normalization equations.
This solution is both plim and pocc since L(t) is an irreducible CTMC.

The system for plim and pocc is,
balance for sets {0, . . . , i− 1}:
pi−1 ∗ λ = pi ∗ µ, i = 1, . . . , K,

pi−1 ∗ λp = pi ∗ µ, i = K + 1, K + 2, . . .

normalization:
∑∞

i=0 pi = 1.

Hence, for i = 1, . . . , K,

pi = λ
µ
pi−1 = (λ

µ
)2pi−2 = . . .= (λ

µ
)ip0 (also true for i = 0),
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and for i ≥ K + 1,

pi = λp
µ
pi−1 = (λp

µ
)2pi−2 = . . . = (λp

µ
)i−KpK = (λp

µ
)i−K(λ

µ
)Kp0 (also true for i = K).

Now we follow the hint for the normalization equation, plug the black and
red relations in there, and get

1 =
∞∑
i=0

pi =
K−1∑
i=0

pi +
∞∑
i=K

pi = p0

(K−1∑
i=0

(λ
µ
)i + (λ

µ
)K

∞∑
i=K

(λp
µ

)i−K︸ ︷︷ ︸
=
∑∞

j=0(
λp
µ

)j=
1

1−λp/µ

)
.

To summarize, the last derivation implies that pocc0 = plim0 are as given in the
question, and

for i = 0, 1, . . . , K, pocci = plimi = (λ
µ
)ipocc0 ,

for i ≥ K + 1, pocci = plimi = (λ
µ
)ipi−Kpocc0 .

(d) [4pt] Derive the fraction of rerouted packages based on your answer
to (c). In particular, if you obtained the correct answer in (c), you should
obtain the fraction of rerouted packages

Πloss = (1− p) (λ/µ)K

1− λp/µ
pocc0 .

Solution Proportion pocci of packages are generated when there are i other
packages in the system, by PASTA. Out of packages generated into the system
with i ≥ K other packages, proportion 1 − p get rerouted. Hence, the
proportion of rerouted packages is given by

Πloss = (1− p)
∞∑
i=K

pocci now use the red relation from (c)

= (1− p)

(
∞∑
i=K

(λp
µ

)i−K

)
︸ ︷︷ ︸
=

1
1−λp/µ from (c)

(λ
µ
)Kp0.

I.e. the formula for Πloss is indeed as given.

Question 3. Jobs arrive at a server according to a Poisson process of rate
λ = 1/3. For 1/4 of the jobs, their service times have a normal N(4, 12)
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distribution. The remaining 3/4 of the jobs require a fixed service time 2.

(a) [5pt] Assume the FIFO discipline at the server and find the average
waiting time EW .

Solution This is an M/G/1 system with arrival rate and service time

λ = 1/3, B =

{
N(4, 12), wp 1/4,

2, wp 3/4.

Since the order of service is FIFO, the Pollaczek-Khinchine formula applies,

EW =
ρ

1− ρ
· E(B2)

2E(B)
.

We have

E(B) = 1
4
∗

4︷ ︸︸ ︷
E(N(4, 12)) +3

4
∗ 2 = 5/2,

E(B2) = 1
4
∗ E(N(4, 12))2︸ ︷︷ ︸

=V+(E)2=12+42=17

+3
4
∗ 22 = 29/4,

ρ = λE(B) = 1/3 ∗ 5/2 = 5/6,

and hence

EW =
5/6

1/6
· 29/4

2 ∗ 5/2
= 29/4 = 7.25.

(b) [3pt] The system under consideration is the result of pooling. Previ-
ously, the varying-size jobs and fixed-size jobs were served at two separate
servers, each twice as slow as the server in the present system. Has the pool-
ing been beneficial for the fixed-sized jobs? Why yes or why not?

Solution Prior to pooling, the fixed-sized jobs at their own server formed
an M/G/1 model with arrival rate and service times

λf = 1/3 ∗ 3/4 = 1/4, Bf = 2 ∗ 2 = 4.

This system had load ρf = λfEBf = 1/4 ∗ 4 = 1 and hence it was unstable.
The pooled system is stable and hence the pooling has been beneficial to the
fixed-sized jobs.

For questions (c) and (d) assume that, in the pooled system, the service dis-
cipline is not FIFO but instead the N(4, 12)-sized jobs have a non-preemptive
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priority over the jobs of fixed size 2.

(c) [2pt] Is the Pollaczek-Khinchine formula applicable in this new situ-
ation in order to find the average waiting time across all jobs together? Why
yes or why not?

Solution The new discipline is size-based and hence the PK formula is not
applicable anymore.

(d) [5pt] Determine the average waiting time EW1 of the high-priority
jobs by doing Mean Value Analysis for this group.

Solution The MVA equations are:{
Little’s law ELq1 = λ1 ∗ EW1,

arrival relation EW1 = ρ ∗ ER + ELq1 ∗ E(N(4, 12)).

In the Little’s law, we use the arrival rate of high-priority customers λ1 =
1/3 ∗ 1/4 = 1/12.

In the arrival relation, we use
- the total load ρ = 5/6 (from (a)) which is also the fraction of time the
server is busy,

- the remaining service time in progress ER =
EB2

2EB
=

29/4

2 ∗ 5/2
(from (a)).

The logic of the arrival relation is as follows:
- with probability ρ, a newly arriving high-priority customer finds the server
occupied (by PASTA) and has to wait for the residual service time in progress
ER,
- the service in progress can be a low- or high- priority customer, in either
case it is not going to be interrupted, that is why ER is based on all of the
customers, both high- and low- priority together,
- after waiting for the remaining service in progress, the new high-priority
customer has to wait for full service times of all high-priority customers in
the queue.

We plug in the Little’s law into the arrival relation and get

EW1 = ρ ∗ ER + λ1 ∗ EW1 ∗ E(N(4, 12)),

EW1 =
ρ

1− λ1 ∗ E(N(4, 12))
∗ ER =

5/6

1− 1/12 ∗ 4
∗ 29/4

2 ∗ 5/2
=

5/6

2/3
∗ 29/4

5
=

29

16
.
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2B)E(B), where c2B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.
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