
SOLUTIONS
Midterm exam Stochastic Modelling

October 26, 2022

Question 1. Consider a discrete-time Markov chain on the state space
{1, 2, 3, 4, 5, 6} with transition matrix

P =


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0 0 0 1
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0 2
3


(a) [4pt] What is the expected number of steps it takes to reach state 5
from state 2?

Solution Let T5 := min{n ≥ 0: Xn = 5} and mi := E(T5 | X0 = i).
The question is what is m2. By conditioning on the 1st step we get the
system
m1 = 1 + 2/3m2 + 1/3m2, 3) m1 = 3 +m2

m2 = 1 + 1/2m1 + 1/2m3, 2) m2 = 2 + 1/2m1 4) m2 = 3.5 + 1/2m2 ⇒ m2 = 7.

m3 = 1 +m4, 1) m3 = 2

m4 = 1.

(b) [3pt] What is the probability that it takes at most five steps to reach
(for the first time) state 5 from state 2?

Solution

P (T5 ≤ 5|X0 = 2) = p23p34p45 + p21p12p23p34p45 = (1 + 1
2
· 1
3
) · 1

2
· 1 · 1 = 7

12
.

(c) [3pt] What is the probability that it takes at most ten steps to reach
(for the first time) state 5 from state 2? An analytic-form answer suffices. If
you use a matrix power in your answer, fully specify the matrix.

Solution
P (T5 ≤ 10|X0 = 2) = (P̃ 10)25,
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where

P̃ =


2
3
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3

0 0 0
1
2

0 1
2

0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 1


i.e. P̃ is the transition matrix of the adjusted Markov Chain with state 5
made absorbing (compare to the original diagram in (d))

1 2 3

45

2/3
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1

1

1

(d) [5pt] For each initial state X0 = i, i = 1, 2, . . . , 6, determine whether a
limit distribution exists and find the limit distribution in case it exists.

Solution Looking at the transition diagram

1 2 3

456

2/3
1/3

1/2

1/2

1

11

2/3 1/3

there are three communicating classes:

- {1,2} is transient,

- {3} is transient,
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- {4,5,6} is absorbing.

Consider the absorbing class {4,5,6} in isolation. It is finite, (irreducible),
and aperiodic and hence has the limit distribution (for X0 = 4, 5, 6). To
find the limit distribution we solve the system of balance of normalization
equations for this class:

π4 = π6 ∗ 1/3,

π5 = π4,

π6 ∗ 1/3 = π5,

π3 + π4 + π5 = 1. (1
3

+ 1
3

+ 1)π6 = 1⇒ π6 = 3
5
⇒ π4 = π5 = 1

5

If the MC starts in either of the transient classes {1,2}, {3}, it will end up in
the absorbing class eventually. Hence, for any initial state X0 = 1, 2, 3, 4, 5, 6,
the limit distribution exists and is the limit distribution on the absorbing
class,

πlim = (0, 0, 0, 1
5
, 1
5
, 3
5
).

(e) [2pt] Make the Markov chain irreducible by adding one transition arrow
and adjusting the transition probabilities if necessary.

Solution For example,

1 2 3
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1/3

1/2

1/2

1

11/2

1/2

2/3 1/3

Question 2. Every day Bob commutes to work in the morning and then
commutes back home in the evening. From time to time he likes to buy a
coffee to-go for his commute. As an environmentally conscious person, Bob
owns three travel coffee cups and uses them for his to-go coffees when he
can.
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To be more specific, each commute Bob feels like having a coffee with
probability 2/3, independently of his other commutes. If Bob does feel like
having a coffee and finds one of the travel cups at his present location, he
grabs that cup along (so at the end of that commute the cup ends up at the
other location). If Bob does feel like having a coffee and finds no travel cup
at his present location, he will buy a coffee in a disposable cup. If Bob does
not feel like having a coffee, he does not carry any travel cups along.

(a) [4pt] Argue that the sequence

Xn = number of travel cups at home at the end of day n

is a discrete-time (time-homogeneous) Markov chain.

Solution The transition diagram is

0 1 2 3

1/3
2/3

2/9 2/9

5/9

2/9 2/9
5/9

2/9

7/9

To explain how the transition probabilities are calculated: there are 4 com-
binations of coffee-wishes for the commute to work and then the commute
back to work, C meaning“Bob wants coffee” and N meaning “Bob does not
want coffee”,

CC wp 2
3
· 2
3

= 4
9
, NC wp 1

3
· 2
3

= 2
9
, CN wp 1

3
· 2
3

= 2
9
, NN wp 1

3
· 1
3

= 1
9
.

Eg transitions out of state 1 are the following: 1 → 2 in case of NC, 1 → 0
in case of CN, and 1→ 1 in case of CC or NN.

Note that there is a simpler way to think of transitions out of state 0: they
are only determined by what happens on the way back home (as on the way
to work in the morning Bob does not carry a travel cup along anyways). If
Bob wants coffee on the way back home (wp 2/3) we get a transition 0→ 1,
and if Bob does not want coffee on the way back home (wp 1/3) we get a
transition 0→ 0.

The Markov property follows from the independence of Bob’s coffee wishes
for the different commutes. The time-homogeneity is in place since the tran-
sition probabilities in the diagram do not depend on time n. To summarize,
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Xn, n ≥ 0, is a time-homogeneous DTMC.

In (b) and (c), make sure to specify which one out of πocc, πlim is relevant.

(b) [4pt] What is the long-run fraction of days on which Bob finds no
travel cup at home?

Solution The answer to the question is πocc
0 . Since the MC is finite and

irreducible, the system of balance and normalization equations gives πocc.
We have

π0
2
3

= π1
2
9
, 1)π1 = 3π0

π1
4
9

= π0
2
3

+ π2
2
9
, 2)π0

4
3

= π0
2
3

+ π2
2
9
⇒ π2 = 3π0

π2
4
9

= π1
2
9

+ π3
2
9
,

π3
2
9

= π2
2
9
, 3)π3 = π2 = 3π0

π0 + π1 + π2 + π3 = 1 4)π0 + 3π0 + 3π0 + 3π0 = 1⇒ π0 = 1
10
,

i.e.
πocc = ( 1

10
, 3
10
, 3
10
, 3
10

).

The final answer is πocc
0 = 1/10.

(c) [5pt] Each time Bob uses a travel cup, he gets a discount of e0.25
on his coffee. How much does Bob save on average per day over the long
time-run? And during a month (a month is 4 weeks, a week is 5 working
days)?

Solution The generic discount in each state is:

C0 =

{
0.25 wp 2/3, if Bob wants coffee on the way back home

0 wp 1/3; if Bob does not want coffee on the way back home

C1 = C2 =


0.5 wp 4/9, if CC

0.25 wp 4/9, if CN or NC

0 wp 1/9; if NN

C3 =


0.5 wp 4/9, if CC

0.25 wp 2/9, if CN

0 wp 3/9; if NC or NN
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Hence the long-run average discount per day is

πocc
0 EC0 + πocc

1 EC1 + πocc
2 EC2 + πocc

3 EC3 =
1
10

(2
3
· 0.25) + ( 3

10
+ 3

10
)(4

9
· 0.5 + 4

9
· 0.25) + 3

10
(4
9
· 0.5 + 2

9
· 0.25) = e0.3.

During a month, Bob saves on average

0.3 ∗ 4 ∗ 5 = e6.

Question 3. An online service desk receives two types of tickets. Type-1
(standard) tickets arrive according to a Poisson process {N1(t), t ≥ 0} of
rate λ1 = 80 per hour. Type-2 (special) tickets arrive according to a Poisson
process {N2(t), t ≥ 0} of rate λ2 = 20 per hour. The two arrival processes
are independent.

(a) [4pt] Which properties of {N1(t), t ≥ 0} and {N2(t), t ≥ 0} ensure that
(i) the total number of tickets arriving in a time interval (s, t] has a Poisson
distribution? (ii) the total numbers of tickets arriving in two non-overlapping
time intervals (s1, t1], (s2, t2] are independent?

Solution (i) We have N1(s, t] ∼ Poisson(λ1t), N2(s, t] ∼ Poisson(λ2t),
N1(s, t] and N2(s, t] are independent. By merging of Poisson random vari-
ables, the total is N1(s, t] +N2(s, t] ∼ Poisson

(
(λ1 + λ2)t

)
.

(ii) We haveN1(s1, t1], N1(s2, t2] independent andN2(s1, t1], N2(s2, t2]. Hence
th total on one interval N1(s1, t1] + N2(s1, t1] is independent from the total
on the other interval N1(s2, t2] +N2(s2, t2].

The service desk consists of two teams, A and B. Type-1 tickets are routed,
independently of each other, either to team A or to team B with probabilities
3/4 and 1/4, respectively. Type-2 tickets always go to team B.

(b) [3pt] What is the expected time between two consecutive ticket ar-
rivals to team B?

Solution Let
- N1A(t), t ≥ 0 denote the arrival process of type 1 customers to team A,
- N1B(t), t ≥ 0 denote the arrival process of type 1 customers to team B.

By thinning, the two new processes are both Poisson and their rates are

λ1A := λ1 ∗ 3/4 = 60 per hour, λ1B := λ1 ∗ 1/4 = 20 per hour.
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Also the two new processes are independent from each other and from type-2
arrivals N2(t), t ≥ 0.

The total arrival process to team B is the merger processN1B(t)+N2(t), t ≥ 0;
it is again Poisson with rate λ1B + λ2 = 20 + 20 = 40 per hour. Hence, the
inter-arrival times to team B are Exponential(40 per hour) with the expec-
tation

EExponential(40 per hour) = 1
40

hour = 1.5min.

(c) [4pt] What is the joint probability that the following happens during
the next 3 minutes: at most 3 tickets arrive to the service desk and no type-1
tickets arrive to team B?

Solution As discussed in (b), the three Poisson processes N1A(t), N1B,
N2(t), t ≥ 0, are all independent with rates λ1A = 60, λ1B = 20, λ2 = 20 per
hour. We have to find

P ((N1A +N1B +N2)(
3
60

) ≤ 3, N1B( 3
60

) = 0) = P ((N1A +N2)(
3
60

) ≤ 3, N1B( 3
60

) = 0)

3 processes are independent = P ((N1A +N2)(
3
60

) ≤ 3) ∗ P (N1B( 3
60

) = 0)

merging in the 1st probability = P (Poisson
(
(60 + 20) 3

60

)
≤ 3) ∗ P (Poisson

(
20 3

60

)
= 0)

= e−4(1 + 4 +
42

2
+

43

6
) ∗ e−1 = 71

3
e−5.

(d) [4pt] What is the probability that the first arrival to the desk is a
type-1 ticket for team B? What is the probability that the first three arrivals
to the desk are, in this precise order, a type-1 ticket for team A, a type-1
ticket for team B, and a type-2 ticket (for team B)?

Solution Note that the inter-arrival times of type-1 tickets to team A are
Exponential(λ1A = 60), the inter-arrival times of type-1 tickets to team B
are Exponential(λ1B = 20), the inter-arrival times of type-2 tickets to team
B are Exponential(λ2 = 20). In the 1st question, we want to know

P (Exp(λ1B) wins from Exp(λ1A),Exp(λB)) =
λ1B

λ1A + λ1B + λ2
=

20

60 + 20 + 20
= 0.2.

In the 2nd question, by the memoryless property, we have three consecutive
competitions among three Exponentials (some full, some remaining), and the
probability is

P (Exp(λ1A) wins from Exp(λ1B),Exp(λB)) ∗ P (Exp(λ1B) wins from Exp(λ1A),Exp(λB))∗
∗P (Exp(λ2) wins from Exp(λ1A),Exp(λ1B)) =

=
λ1A

λ1A + λ1B + λ2

λ1B
λ1A + λ1B + λ2

λ2
λ1A + λ1B + λ2

=
60

100

20

100

20

100
= 0.024.
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