
SOLUTIONS
2nd resit Stochastic Modelling

April 13, 2022

Question 1. Consider a discrete-time Markov chain on the state space
{1, 2, 3, 4, 5, 6} with transition matrix

P =
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(a) [5pt] For each initial state X0 = i, i = 1, 2, . . . , 6, determine whether an
occupancy and/or limit distribution exists and find the occupancy and/or
limit distribution in case it exists.

Solution Looking at the transition diagram,
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there are three communicating classes: transient {1,2}, absorbing {3,4,5},
and transient {6}.

The absorbing class {3,4,5} is finite and aperiodic, and hence the occupancy
and limit distribution within this class exist for any initial state. They are
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determined by the balance and normalization equations
(3) π3 = π4 ∗ 2/3 + π5 ∗ 1/3,

(4) π4 = π3 ∗ 1/3 + π5 ∗ 2/3,

π5 = π3 ∗ 2/3 + π4 ∗ 1/3,

π3 + π4 + π5 = 1.

(4) plugged into (3) gives

π3 = π3 ∗ 2/9 + π5 ∗ 4/9 + π5 ∗ 1/3 ⇔ 7/9π3 = 7/9π5 ⇔ (5) π3 = π5,

and (5) plugged into (3) gives

π3 = π4 ∗ 2/3 + π3 ∗ 1/3 ⇔ π3 = π4.

Now normalization implies π3 = π4 = π5 = 1/3.

Finally, for any initial state X0 = 1, 2, . . . , 6, the Markov chain ends up in
the absorbing class {3, 4, 5}, and hence the limit and occupancy distributions
exist and are given by

πlim = πocc = (0, 0, 1/3, 1/3, 1/3, 0, 0).

(b) [4pt] Assume the initial state is 1. By conditioning on the first step,
find the probability that the Markov chain reaches state 4 for the first time
without making a direct transition from 3 to 4.

Solution The question is what is q1, where

qi := P (reach 4 for the 1st time without a direct transition 3→4 | X0 = i).

By conditioning on the 1st step we get the system
(1) q1 = 1/2q2 + 1/2q3,

(2) q2 = 1/2q1 + 1/2q3,

(3) q3 = 1/3 ∗ 0 + 2/3q5,

(5) q5 = 1/3q3 + 2/3 ∗ 1.

Since (1) and (2) have the same RHS, it follows that q1 = q2 and then from
(1) it also follows that q1 = q3. (5) plugged into (3) gives

q3 = 2/9q3 + 4/9 ⇔ q3 = 4/7.
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To conclude, the answer is q1 = 4/7.

Question 2. Two teams, A and B, meet each other in a series of games
until either of the teams has won three games in a row. Each game results in
a draw with probability 0.1, team A winning with probability 0.6, or team
B winning with probability 0.3. The outcomes of the games are independent.

(a) [5pt] Formulate a discrete-time Markov chain that is suitable to analyse
the duration of the game series. Provide the transition diagram rather than
the transition matrix.

Solution Let Xn = 0 if game n results in a draw and otherwise Xn =
(winning team in game n, current # consecutive wins by this team). This is
a DTMC with transition diagram
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The Markov property follows from the independence of the games. We also
have the time-homogeneity as the probabilities for A to win, B to win, or a
draw are the same for all games n.

(b) [3pt] What is the probability that the series takes at most 5 games?
An analytic-form answer in terms of the transition matrix P suffices. You
do not have to provide P itself.

Solution The series is over as soon as state 3A or state 3B is reached
for the 1st time, i.e. the series duration is T = min{n ≥ 1: Xn = A3 or B3}.
The probability in question is

P (T ≤ 5 | X0 = 0)
A3, B3 absorbing states

= P (X5 = A3 or X5 = B3 |X0 = 0)

= (P 5)0,A3 + (P 5)0,B3.

3



(c) [3pt] Give a system of equations that determines the expected duration
of the game series. You do not have to solve this system.

Solution We want to know m0, where mi = E(T | X0 = i). The mi’s
are determined by the system

m0 = 1 + 0.1m0 + 0.6mA1 + 0.3mB1,

mA1 = 1 + 0.1m0 + 0.6mA2 + 0.3mB1,

mB1 = 1 + 0.1m0 + 0.6mA1 + 0.3mB2,

mA2 = 1 + 0.1m0 + 0.6 ∗ 0 + 0.3mB1,

mB2 = 1 + 0.1m0 + 0.6mA1 + 0.3 ∗ 0.

Question 3. Alarms arrive at an emergency desk according to a Poisson
process at rate 10 per 24-hour day. Each alarm turns out to be a false one
with probability 0.1, independently of the other alarms.

(a) [3pt] What is the probability that it takes more than 8 hours till the
next true alarm?

Solution By thinning, the true alarms arrive according to a Poisson pro-
cess at rate λ = 0.9 ∗ 10 = 9 per 24-hour day. Hence, the time till the next
true alarm has an Exponential distribution with this rate and the answer is

P (Exp(λ) > 8/24) = e−9∗8/24 = e−3.

(b) [5pt] A 24-hour day consists of three 8-hour shifts. What is the prob-
ability that exactly 3 true alarms are received on a given day but none of
them is received in the middle shift of the day?

Solution Denote by N(·) the arrival process of the true alarms (it is a
Poisson process with rate λ = 9). The question is what is

P{
# true alarms in the middle shift︷ ︸︸ ︷

N(2/3)−N(1/3) = 0,

# true alarms in the 1st and 3rd shifts together︷ ︸︸ ︷(
N(1/3)−N(0)

)
+
(
N(1)−N(2/3)

)
= 3}?

We note that
- the numbers of true alarms in the three shifts are independent because the
shifts do not overlap,
- the number of true alarms in each of the three shifts ∼ Poi(λ∗1/3) = Poi(3);
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- due to independence and merging of Poisson random variables, the number
of true alarms in the 1st and 3rd shift together ∼ Poi(3 + 3) = Poi(6).

Hence,the answer is
e−3 ∗ e−663/3! = 36e−9.

Question 4. Consider a single-server system where potential customers ar-
rive according to a Poisson process with rate λ. If, upon arrival, a customer
finds i = 1, 2, . . . other customers in the system, then this customer joins
the queue with probability 1/(i + 1) or leaves immediately with probability
i/(i+1). A customer that arrives into an empty system immediately proceeds
to the server. The service times are distributed exponentially with rate µ.

(a) [6pt] Argue that the number of customers in the system is a continuous-
time Markov chain. For which λ and µ is this system stable? Determine the
occupancy distribution pocc and limit distribution plim in the stable scenario.

Solution Let L(t) be the number of customers in the system at time t, t ≥ 0.
This is a CTMC since all transitions take Exponential times according to the
diagram

0 1 2 3 . . . i . . .
λ λ/2 λ/3 λ/4 λ/i λ/(i+ 1)

µµµµµµ

Stability condition: Intuitively, this CTMC is stable for all λ and µ because,
in large states, the growth rate λ/i is below the decay rate µ. Formally, this
(irrducible) CTMC is stable because there exists a solution to balance and
normalization equations for any λ and µ, as we show below. This solution is
both plim and pocc.

The system for plim and pocc is,
global balance for sets {0, . . . , i− 1}:
pi−1 ∗ λ/i = pi ∗ µ, i = 1, 2, . . .

normalization:
∑∞

i=0 pi = 1.
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It follows that,

pi =
λ/µ

i
pi−1 =

λ/µ

i

λ/µ

i− 1
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i
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. . . . . .

λ/µ

1
p0 =

(λ/µ)i

i!
p0, i ≥ 0,

which we plug into the normalization equation and get

1 = p0

∞∑
i=0

(λ/µ)i

i!
= p0e

λ/µ ⇔ p0 = e−λ/µ.

Hence,

pocci = plimi = e−λ/µ
(λ/µ)i

i!
, i ≥ 0.

(b) [4pt] (i) What is the fraction of time the server is idling based on your
answer in (a)? (ii) What is the fraction of time the server is idling in terms
of the busy period of the server? (iii) Find the average busy period of the
server using (i) and (ii).

Solution (i) % time server idling = pocc0 = e−λ/µ.

(ii) The server alternates between periods of idling and busy periods. Idling
is waiting for a customer to arrive into an empty system and takes an
Exponential(λ) amount of time. Hence

% time server idling =
E(idling)

E(idling)︸ ︷︷ ︸
1/λ

+E(BP )
.

(iii) We have

e−λ/µ = % time server idling =
1/λ

1/λ+ E(BP )
,

which gives

e−λ/µ
1

λ
+ e−λ/µE(BP ) =

1

λ
⇔ E(BP ) =

1

λ
∗ 1− e−λ/µ

e−λ/µ
=
eλ/µ − 1

λ
.

(c) [3pt] Express the fraction of lost customers in terms of the probabilities
pocci . You do not have to plug in the solution from (a) and further work out
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the formula.

Solution By PASTA, fraction pocci of potential customers upon their ar-
rival find i other customers already in the system. Out of customers who,
upon arrival, find i other customers already in the system, fraction i/(i+ 1)
leaves immediately (i.e. they are lost). Hence, in total the fraction of lost
customers is

∞∑
i=1

pocci
i

i+ 1
.

Question 5. A service desk handles high- and low-priority customers which
arrive according to two independent Poisson processes; the rates are λH = 1
and λL = 3, respectively. There is a single server that serves customers one
at a time and the order is as follows: at the end of a service, high-priority
customers have priority over low-priority customers, but an ongoing service
is never interrupted. Within the high-priority class, the order of service is
FIFO; and within the low-priority class the order of service is FIFO. All ser-
vice times are distributed exponentially with rate µ = 8, regardless of the
customer priority.

(a) [4pt] What is the average waiting time EW across all of the customers,
high- and low- priority together? In particular, is the Pollaczek-Khinchine
formula applicable?

Solution The total number of customers is an M/M/1 queue that is stable
(the arrival rate λH + ΛL < service rateµ) and has a work-conserving non-
preemptive service discipline. Hence the PK formula is indeed applicable and
we have

EW =
ρ

1− ρ
ER,

where

ρ = (λH + λL) ∗ 1

µ
= 4/8 = 1/2,

residual service time ER = E(Exp(µ)) = 1/8,

and that gives EW = 1/8.

(b) [5pt] Determine the average waiting time EWH of high-priority cus-
tomers and the average number ELqH of high-priority customers in the queue
by doing Mean Value Analysis for this type of customers.
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Solution The MVA equations are:{
Little’s law ELqH = λHEWH ,

arrival relation EWH = ρ ∗ EExp(µ) + ELqH ∗ EExp(µ).

The arrival relation above comes up as follows:
- By PASTA, it is with probability ρ that a high-priority customer arrives
while the server is busy and has to wait for the residual service time at the
server, which is Exp(µ) regardless of whether it is a low- or high- priority
customer at the server.
- Each high-priority customer has to wait for the full service times of the
high-priority customers in front of him in the queue.

We plug in the rates and ρ and getLittle’s law ELqH = EWH ,

arrival relation EWH =
1

2
∗ 1

8
+ EWH ∗

1

8
⇒ EWH =

1

14
= ELqH .

(c) [4pt] Now consider the total number of customers in the system, i.e.,
neglect the priorities. Also assume that now an idle server requires some
start-up time. More specifically, when a customer arrives into an empty sys-
tem, the server does not start service immediately but remains idle for an
extra period of time, which is referred to as a start-up time. Assume that
the start-up times are distributed exponentially with rate θ. Formulate a
continuous-time Markov chain where the state has two components, one of
which is the total number of customers in the system.

Solution Let

X(t) = (‘i’dling/‘s’tarting-up/‘w’orking state of the server,

# customers in the system) at time t.

This is a CTMC with transition diagram

(s, 1) (s, 2) (s, 13) . . .

(i, 0)

(w, 1) (w, 2) (w, 3) . . .

θ

λH+λL=4

µ=8

(with all
4

,
8

,
θ

).
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FORMULA SHEET

Erlang distribution. If Sn has an Erlang(n, µ) distribution, then

P (Sn > t) =
n−1∑
k=0

e−µt
(µt)k

k!
and fSn(t) = µ e−µt

(µt)n−1

(n− 1)!
.

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

P (R ≤ x) =
1

E(X)

∫ x

0

P (X > u) du and E(R) =
E(X2)

2E(X)
.

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

E(W ) =
ρ

1− ρ
E(B2)

2E(B)
=

1

2

ρ

1− ρ
(1 + c2B)E(B), where c2B =

V (B)

(E(B))2

E(BP) =
E(B)

1− ρ
.

M/M/c queue. The probability of waiting ΠW , waiting time W and so-
journ time S satisfy

ΠW =
(cρ)c/c!

(1− ρ)
∑c−1

i=0(cρ)i/i! + (cρ)c/c!
,

E(W ) = ΠW
1

cµ(1− ρ)
and P (W > t) = ΠW e−cµ(1−ρ)t,

P (S > t) =
ΠW

1− c(1− ρ)
e−cµ(1−ρ)t +

(
1− ΠW

1− c(1− ρ)

)
e−µt.

M/G/c/c queue. The blocking probability is

B(c, a) =
ac/c!∑c
i=0 a

i/i!
with a = λE(B) = cρ.

9


