SOLUTIONS
Resit Stochastic Modelling
February 14, 2022

Question 1. Consider a discrete-time Markov chain on the state space
{1,2,3,4,5}.

(a) [5pt] Assume the transition matrix is

s

I
O O O O wie
O O = O w=
O O O = O
wow © O O wl
Wk _= O O O

For initial state (i) Xy = 1, determine with which probability the Markov
chain ends up in each of the absorbing classes. For initial states (ii) X, = 2,
(iii) X = 5, determine whether a limit distribution exists and find the limit
distribution in case it exists.

Solution Looking at the transition diagram,

13~ 13

1 1 1| |2/3

1/3
there are three communicating classes:
- {1} is transient,
- {2,3} is absorbing and periodic with period 2,

- {4,5} is absorbing and aperiodic.



(i) If X, = 1, then the Markov chain ends up in {2, 3} with probability

1/3
1/3+1/3

P(escape to 2 | escape from 1) = =1/2

and, similarly, ends up in {4,5} with probabiltiy 1/2.
(ii) If Xy = 2, then the Markov chain forever stays in the absorbing class

{2,3}. Tt oscillates between states 2 and 3 and and hence 7™ does not exist.
More formally, the transient distributions repeat the pattern

™ =(0,1,0,0,0)
=) = (0,0, 1,0,0)

and do not converge.

(iii) If X, = 5, then the Markov chain forever stays in the absorbing class
{4,5}. This class is finite and aperiodic, hence the limit distribution within
this class exists and is given by the balance and normalization equations

Ty = 5 % 2/3,
75 = Ty + 75 % 1/3,
7T4—|—7T5 = 1,

which give my = 2/5, 5 = 3/5. Then limit distribution on the whole state
space is .
7™ =(0,0,0,2/5,3/5).

(b) [3pt] Assume the transition matrix is

S O = O wi
O O = O wie
o O O = O
who O O O wli=
W= = O O O

Note that the only difference with part (a) is in the transitions out of state 3.
What is the expected number of steps it takes to reach state 4 from state 1?7



Solution Let T := min{n > 0: X,, = 4} and m; := E(Ty | X, = ).
The question is what is m;.

By conditioning on the 1st step we get the system

(1) my=1+1/3my+1/3mg+1/3 %0,
(2) m2:1+m3,

We plug in (3) into (2) and get
m2:1—|—1+1/2m1—|—1/2m2 ~ 7712:4"—77117
which we plug into (1) and get

my=1+1/3m;+4/3+1/3m;y < 1/3m;=7/3 & my=T.

Question 2. A furniture store carries in its range a certain type of bed for
which the monthly demands are independent and distributed uniformly be-
tween 0 and 4 (i.e., the demand during each month is ¢ with probability 1/5
fori=0,1,...,4). Due to limited storage, the store can have up to 4 beds in
stock at a time. The demand that arrives while beds are out of stock is lost.
The inventory control is as follows. If there are less than 2 beds in stock at
the end of a month, then the shop restocks up to full capacity and starts the
next month with 4 beds in stock (the delivery time from the supplier to the
shop is negligible). Otherwise the shop does not restock and starts the next
month with what is left from the previous month.

(a) [5pt] Argue that the inventory levels at the end of each month form
a discrete-time Markov chain. Provide the transition matrix and a system
of equations that determines the occupancy and limit distribution. Without
solving this system, argue why the occupancy and limit distributions exist.

Solution Denote by X,, the number of beds in stock at the end of month n,
n > 0. This is a DTMC with state space

S =1{0,1,2,3,4}



and transition matrix

1/5 1/5 1/5 1/5 1/5\ repeats row for 4
1/5 1/5 1/5 1/5 1/5 | repeats row for 4
3/5 1/5 1/5 0 0

2/5 1/5 1/5 1/5 0

1/5 1/5 1/5 1/5 1/5

= w N = O

To explain some of the transition probabilities,
P(X,+1 =0]X,, =0) = P(demand in month n + 1 is 4) = 1/5,
stock up to 4
P(X,11 =0|X,, =2) = P(demand in month n+ 1 is 2, 3, or 4) = 3/5.
remains 2 start of next month
The Markov property follows from the independence of the monthly demands.

We also have the time-homogeneity as the transition probabilities do not de-
pend on n.

Regarding the occupancy and limit distribution, this MC is irreducible, ape-
riodic and has a finite state space. Hence both 7! and 7°° exist and are
determined by this system:

. .
balance Ty = %71’0 + %m + g?TQ + %7'('3 + %7?4,
_ 1 1 3 2 1
T = 577'0 + 5771 + 57'('2 + 577'3 + 571'4,

1 1 1 1 1
To = 577'0 + 577'1 + 577'2 + 571'3 + 571'4,

1 1 1 1
T3 = Mo + 571 + 53 4 T,
1 1 1
7T4—57T0+57T1 +57T4,
4
 norm > o = 1.

(b) [3pt] If the distribution from part (b) were known, how would you
calculate the long-run average number of lost sales per month?

Solution
e (P(demand =3) * 1 + P(demand = 4) x 2) + 73 P(demand = 4) x 1 =

__ 3 occ 1 __occ
=Ty + ;T3

(c) [5pt] Consider a new situation where customers that arrive while beds
are out of stock are not lost. Instead backorders are placed for these cus-
tomers. At the end of a month with backorders, the store orders (and immedi-
ately receives) 4 beds from the supplier. Out of these 4 beds, the backorders

4



are immediately covered. The remaining beds are the stock that the store
starts the next month with. For months without backorders, the replenish-
ment rule is the same as before. Model this new situation as a discrete-time
Markov chain assuming additionally that, when the shop opened for the very
first time, there was a full stock of 4 beds.

Hint: the final assumption guarantees that the number of backorders never
exceeds a certain threshold.

Solution The final assumption guarantees that there can be at most 2
backorders per month. Let

¥ 7, if there are 1 = 0,1, 2, 3,4 beds in stock
" —1i, if there are i = 1, 2 backorders

This is a DTMC with state space
S={-2,-1,0,1,2,3,4}

and transition matrix

I
N\

/5 1/5 1/5 1/5 1/5 0 0 \ repeats row for 2
-1 0 1/5 1/5 1/5 1/5 1/5 0 |repeatsrow for 3
0 0 1/5 1/5 1/5 1/5 1/5 |repeats row for 4
0 0 1/5 1/5 1/5 1/5 1/5 |repeats row for 4
1/5 1/5 1/5 1/5 1/5 0 0
0 1/5 1/5 1/5 1/5 1/5 0
0 0 1/5 1/5 1/5 1/5 1/5

=W NN = O

Like in (a), the Markov property follows from the independence of the monthly
demands and we have the time-homogeneity.

Question 3. In a three-component computer system, the components A,
B, and C' work in parallel and experience failures. A failed component is
replaced immediately. All lifetimes are independent and distributed expo-
nentially. The rates are Ay = 2, A\g = 1, A\¢ = 1 per day for components of
type A, B, C, respectively.

(a) [5pt] What is the joint probability that the following happens on a
given day: there are two failures, both of them happen in the second half of
the day, and none of them is of component A?

at the end of month n.



Solution From the problem description we recognise that the failures of
the three components follow three independent Poisson processes. We de-
note

- by Na(t), t > 0 the Poisson failure process for component A, its rate is
A = 2;

- by Npic(t), t > 0, the merger of the Poisson failure processes for compo-
nents B and C, it is a Poisson process as well, its rate is A\g + A\¢ = 2, and
it is independent from N4(t), t > 0.

The question is what is

# A failures in (0,1] # B&C failures in (0,1/2] # B&C failures in (1/2,1]
P{Na(1) = Na(0) = 0, Np4c(1/2) — Npsc(0) = 0, Np1c(1) — Npyo(1/2) = 2}

We note that

- the three events are independent because the processes Na(-) and Npc(-)

are independent and because the intervals (0,1/2] and (1/2,1] are non-overlapping;
- NA(l) — NA(()) ~ PO’Z()\A * (1 — 0)) = POZ(Q),

- NB+C(1/2) — NB+C’(O) ~ POZ((/\B + )\0) * (1/2 — 0)) = POZ(l),

- NB-{—C(l) — NB+C(1/2) ~ POZ((/\B + /\0) * (1 — 1/2)) = POZ(l)

Hence,the answer is
e 2xetxe /2 =e1/2.

(b) [3pt] What is the probability that the first failure in this system is of
component A?

Solution Here and in part (c), we will use notations A, Ay, ..., for the
consecutive lifetimes (times between failures) of component A, and similarly
for B and C.

The question is what is

2 1
P{ A, wins from min(By,C))} = 513- 7%
~Exp(Aa) ~Exp(Ap+Ac)

(c) [3pt] What is the joint probability that the first, second and third fail-
ure in this system are of component A, B and C', respectively?



Solution The question is what is

P{A; wins from min(By, C}),
remaining B; wins from min(As, remaining C1),

remaining C wins from min(remaining Ao, Bs)}.

Using the memoryless property of the Exponential distribution, the proba-
bility in question equals

P(Exp(A4) wins from Exp(Ag + A¢))
* P(Exp(Ap) wins from Exp(As + A¢))
« P(Exp(A¢) wins from Exp(As + Ap))
2 1 1 1
= * * = —.
2+2 1+3 1+3 32

Question 4. Consider a stable M /M /2 system with arrival rate A, service
rate p, and the load per server p := \/(2u) < 1.

(a) [6pt] Argue that the number of customers in the system is a continuous-
time Markov chain. Determine the occupancy and limit distribution. In
particular, derive that
pocc :plim _ 1 — P
0 0 1 _I_ p
Solution Let L(t) be the number of customers in the system at time ¢, ¢ > 0.
This is a CTMC since all transitions take Exponential times according to the

diagram
A A A A A A
0\_/1\_/2\_/3 v\_/zv\_/z_'_
M 2/ 21 21 2u

Below we find a solution to balance and normalization equations. This solu-
tion is both p/™ and p° since L(t),t > 0 is an irreducible CTMC.

The system for p!™ and p°° is,

global balance for sets {0,...,7 — 1}:
Po*x A=py*xp, =1,
Dicix A=p;*2u, =23, ...

normalization: ) > p; = 1.



With p:= \/(2u), it follows that

P = 2pp
and, for i = 2,3, ...,

pi = ppi-1 = pPica=...=p" 'p1 = 2p"po.

To summarize, for all i > 1, we have p;, = 2p'py, which we plug into the
normalization equation and get
[e.e]

L=po+ Y pi=po+d 20 =po(14+2) ) =m(1+2(3 5~ 1))
=1 i=1 i=1

1=0

1 2-(1—p) 1+4p
- 2——1): L S £ .
po( 1—p Po 1—p pol_p
Hence,
oce lzm_l_p
Dy =Dy _—1+p’
. 1—p.
occ __ {zm: 7 > 1.
p’L pl 1+p/07 2_

(b) [2pt] Express the fraction Iy, of customers that experience waiting in
terms of the probabilities pf®. You do not have to plug in the solution from
(a) and further work out the formula.

Solution Customers that do not have to wait (the fraction of such cus-
tomers is 1 — Iy,) are those who, upon arrival, see at least one of the two
servers free, i.e. those who see 0 or 1 other customers in the system. By

PASTA,

occ occ occ occ

1 — Iy = pg™ + pi*, ie. Iy =1—pg™ — pi.

(c) [5pt] Use Mean Value Analysis to find the customer-average waiting
time KW and the time-average number of customers in the queue FL9.
Remark: a reference to the formula sheet for EW will not suffice. The wait-
ing probability Iy can be left in the answer as is.

Solution The MVA equations are:

Little’s law ELYT = EW,
arrival relation  EW = Iy * EExp(2u) + EL? * EExp(2u)

1 1
=1y *x — + ELT%x —.
20 21



The arrival relation above comes up as follows:

- Proportion Il of customers arrive while both servers are busy and one of
the two servers has to free up before the queue starts moving forward. This
takes an Exp(2u) amount of time (the minimum of the two remaining Exp(u)
service times, we also use the memorylessness here).

- Then the entire queue has to move forward. For each customer in the queue
this again takes an Exp(2u) amount of time (as one of the two servers has
to become free for the next customer in the queue to move forward to the
servers).

To solve the MVA equations, we plug the Little’s law into the arrival re-
lation and get

Il Il
EW=-"Y4Elsp & EW=_-—2"_
2u 2p(1 = p)
and
pro— we.
L=p

Question 5. A service desk handles two types of customers that arrive ac-
cording to two independent Poisson processes, both of unit rate, Ay = Ay = 1.
The service times are distributed exponentially, with rates p; = 3 and ps = 6
for the two customer types, respectively. The customers are helped one at a
time in the order of arrival. The waiting room is unlimited.

(a) [4pt] The number of customers present can be viewed as an M/G/1
model. Specify the arrival rate and the service time distribution in this
M /G /1 model, and find the customer-average waiting time.

Reminder: for a random variable X ~ Exponential(«), the variance is 1/a?.

Solution Each next customer is of type 1 if the next type 1 arrival wins
from the next type 2 arrival, i.e., with probability A;/(A; + Ay) = 1/2. Sim-
ilarly, each next customer is of type 2 with probability 1/2. Hence, the
service time distribution in the M/G/1 model representing the total number
of customers present is (hyperexponential)

o [EE) w1,
Exp(6) wp 1/2.

The arrival rate in this M/G/1 model is the rate of the merger of the two

arrival processes,
A=A+ =2.



We use the PK formula to find the customer-average waiting time,

p FE(B)?
EW = ————
1—p 2EB’
where
EB = %EEXp(S) 1EEXp(6) :%*%4_%*%:%’
E(B?) = LE(Exp(3)?) + LE(Exp(6)2) = 1x 2 + 152 = 2
(we use E(Exp(@)* = V + (E) = )

p=AEB=2%%=1.

2
Altogether, we have

pw 12,585 2 5
1212 36 1 18

(b) [5pt] Model the situation at the service desk as a continuous-time
Markov chain where the state has two components one of which is the num-

ber of customers present.
Solution Let
X(t) = (# customers present, type of customer in service) at time ¢.

This is a CTMC with transition diagram

/2\,1 /N
«3/27

<0, X X
e(ﬂ)f
~_ 7

(with all — 2~ : 32 7 _6/2 )

To explain: in states (i,1), once the Exp(3) service is completed, the next
customer in queue/to go into service is of type 1 or 2 with probability 1/2.
This is equivalent to two separate transitions Exp(3 *1/2) to (i — 1,1) and
Exp(3 % 1/2) to (i — 1,2) since Exp(3) ~ min(Exp(3 * 1/2), Exp(3 x 1/2)).
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FORMULA SHEET

Erlang distribution. If S, has an Erlang(n, 1) distribution, then

P(S,>t)=) e™ ()" and fs, (t) = pe ™ (:;Lnl

3
—_

i
o
=
—~
|
—
~—

Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

x):ﬁ/:P(X>u)du and E(R) =

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

P E<BQ)_1 P 2 2 _ V(B)
EW) = - ,3E(B) 21— p(l + c5)E(B), where cj = (EB)P
E(BP) = 1(733

M/M/c queue. The probability of waiting ITy,, waiting time W and so-
journ time S satisfy
(cp)e/¢!

HW = c—1

(1= p) SiZg(cp)i/it + (cp) /el

1
EW)=1Ilyy ———— and  P(W >t) = Uy e (=Pt
Wy =1w a—p ( ) =Ty
HW _ _ HW —
P(S>t)=— "1 _eenll=nt 4 (1 W ) mnt
B=D=1—1=p° UTimaa=g)°

M/G/c/c queue. The blocking probability is

ac/c!

Ble.a) = s T

with a = A E(B) = ¢p.

11



