SOLUTIONS
Final exam Stochastic Modelling
December 22, 2021

Question 1. In an auto repair shop, there is a single repairman and room
for (at most) two cars at a time (one undergoing repair and one waiting for
repair). Cars drop by this repair shop according to a Poisson process of rate
2. A car that drops by and finds the shop already occupied by two other cars
can not be taken in and leaves immediately. The repair times of the different
cars are independent and distributed exponentially with rate 2. The order
of repair is the order of arrival.

(a) [2pt] Formulate a CTMC based on which you can answer the sub-
sequent parts of the question.

Solution L(t) = number of cars in the shop at time ¢ is a CTMC with
the transition diagram

(b) [2pt] At a certain moment the repair shop is empty. What is the
expected time until it is full?

Solution Let Ty := min{t: L(t) = 2} and m; := E(T, | L(0) = 0). The
question is what is my.
By conditioning on the 1st jump we get the system

mo=1/2+ 1% my,
my=1/4+1/2%xmg+ 1/2%0.

As we plug the 2nd equation into the 1st, we get

mo=1/2+1/4+1/2my < 1/2me=3/4 <& mo=3/2.

(c) [3pt] What is the fraction of time that each of the following three situ-
ations occur: (i) the shop is empty, (ii) there is exactly one car in the shop,
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(iii) the shop is full?

Solution The question is what is (i) pg®, (ii) py®, (iii) p$*. Since L(-)
is an irreducible CTMC on a finite state space, the occupancy distribution
exists and solves the balance and normalization equations:

po* 2 =p; x2, balance for state 0
p1*x2=mpy*x2, global balance for set {0, 1}

po+p1+p2=1

From the two balance equations it follows that po = p; = po and then the
normalization equation gives py = p; = pa = 1/3.

Le. the answers are (i) 1/3, (ii) 1/3, (iii) 1/3.

(d) [2pt] What fraction of cars drop by a full shop and have to leave
without repair?

Solution By PASTA, it is p3* = 1/3.
(e) [2pt] What is the time-average number of cars in the shop?

Solution It is EL = p§® 04+ p{“* 14+ p3°*2 = 1.

Question 2. Customers arrive at a service facility according to a Poisson
process of rate A. Their service times are independent and distributed expo-
nentially with mean 1/u. The number of servers depends on how crowded
it is in the system relative to a certain threshold K. There is one perma-
nent server and a virtually unlimited amount of support servers. At all times
when there are K or less customers in the system, the permanent server is
handling them on its own, one at a time in the order of arrival. At all times
when there are more than K customers in the system, the support servers
are involved so that each customer is served at its dedicated server. (Mind
that as soon as the number of customers drops down to K, the support is
discontinued and it is the permanent server on its own again.)

(a) [4pt] Argue that the number of customers in the system is a CTMC.
Argue intuitively whether it is a stable CTMC.

Solution L(t) = number of cars in the shop at time ¢ is a CTMC with



the transition diagram
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Intuitively, this CTMC is stable because, for large states, the arrival rate
is below the service rate.

(b) [5pt] Find the limit and occupancy distribution. In particular, derive

that .
, 1 — pitt K o
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where p := \/p.

Solution Below we find a solution to balance and normalization equations.
This solution is both p"™ and p°* since L(t) is an irreducible CTMC.

The system for p'"™ and p° is,

global balance for sets {0,...,i —1}:
pi,I*A:pi*/j7 ’izl,...,K,
Pict kA=pi*xipu, t=K+1,K+2 ...

normalization: Y > p; = 1.
Hence, fori=1,..., K,
_ o K .
Di = ppi—1 =P Ppia=...=p po (also true for i = 0).

As for i > K + 1, it follows that
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Now we plug the black and red relations into the normalization equation and
get
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To summarize, the last derivation implies that pi® = pi™ are as given in the
question, and
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fori=0,1,..., K, pocc—pilm—ppo,

for 12 K +1, g = 7 = K12 g

(c) [4pt] The higher the threshold K, the higher the fraction of customers
that experience waiting times; you can use this monotonicity fact without
proof. The table below provides the occupancy and limit probabilities for
A =55 u =1 and a few different values of K. These probabilities are
rounded. Based on this table, if A = 5.5 and p = 1, what is the biggest

K under which the fraction of customers that experience waiting does not
exceed 5%?

Do y4! D2 P3 P4 Ds De b7

0.002 0.011 0.063 0.115 0.158 0.174 0.159 0.125
0.001 0.004 0.022 0.121 0.166 0.183 0.168 0.132
0.0002  0.001 0.006 0.034 0.187 0.206 0.189 0.148
0.00005 0.0002 0.002 0.008 0.046 0.252 0.231 0.181
0.00001 0.00006 0.0003 0.002 0.01 0.056 0.311 0.244
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Solution Customers that, upon arrival, see 1 to K — 1 other customers in
the system will experience waiting. By PASTA, the fraction Iy of such
customers is

occ

Hy = pi™ + p5 + ... + 0¥,

From the table we find that,

for K =4, Iy = pi“+ pd™ + ps* ~ 0.041 < 5%,
for K =5, Iy = pi® + p3= + pi + pi“ ~ 0.0562 > 5%.



It is given that Ily, increases in K, hence K = 4 is the biggest under which
Iy does not exceed 5%.

(d) [5pt] Consider a new situation where there is a different procedure to
involve the support servers. It is not the case anymore that the support
servers necessarily get involved as soon as the number of customers exceeds
K. With each new arrival that leads to more than K customers in the system,
the permanent server makes a request for support. The request is satisfied
with probability o independently of all previous such requests. In case the
request is satisfied, the support servers get involved immediately (so that
each customer is served at its dedicated server) and remain involved until
the number of customers drops down to K (then it is the permanent server
on its own again). In case the request is not satisfied, the permanent server
remains on its own until the next opportunity to request support (i.e. until
the next arrival that leads to more than K customers in the system).

Formulate a CTMC that models this new situation and, in particular,
keeps track of the number of customers in the system. Do you have to in-
clude any additional information in the state?

Solution X (t) = (number of customers in the system, number of work-
ing servers) at time ¢ is a CTMC with the transition diagram
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To explain: in states i > K, the arrival Exp(\) transition, once it happens,
turns out to be to (i + 1,7 + 1) wp «a (in case the request for support is
satisfied) and to (i+1,1) wp 1 —« (in case the request for support is not sat-
isfied). This is equivalent to two separate transitions Exp(A«) to (i+1,i41)
and Exp(A(1—a)) to (i41,1) since Exp(\) ~ min(Exp(Aa), Exp(A(1—a))).



Question 3. There are two communication channels. Channel A handles
type A messages, which are generated at rate 1/4 and are all of fixed size
3. Channel B handles type B messages, which are generated at rate 1/30
and are varied in size, the size distribution is (approximately) Normal with
mean 18 and variance 9. The rates are per second and the sizes are transmis-
sion times in seconds at a unit transmission speed. Both channels transmit
messages at a unit speed. There is an option of merging the two channels
with the benefit of doubling the transmission speed and cutting transmission
times by half.

(a) [5pt] Both channels transmit messages in the order in which the mes-
sages are generated. In particular, transmissions are delayed on average by
4.5 seconds at channel A and by 13.875 seconds at channel B (these two val-
ues you can use without derivation). Show that, after merging, the average
transmission delay would be approximately 5.13 seconds. Is there an im-
provement to the average transmission delay of type A messages, the average
transmission delay of type B messages, or the weighted average delay?

Solution At the merger channel, the number of messages changing over
time is an M/G/1 queue with arrival rate and service (transmission) time

9 Wp ——m—m—,

A=1/4+1/30, B= 1/4173%)/30
N(18,9)/2 = N(9,9/4 _

(18,9)/2= NO,9/4). wp 17 g

Since the order of service (transmission) is FIFO, the Pollaczek-Khinchine
formula applies and the average waiting time (transmission delay) is given

_p EB
EW = 1— p2E(B)
We have
B(B) = ﬁ £3/2 4 1/411% BN (9,9/1)),
o 1/4 ) 1/30 )
E(B?) = Ui (3/2)? + i1 E(N(9,9/4))

—V+(E)?=9/4+9?
p=AE(B)=1/4%3/2+1/30%9.

As we plug these values into the PK formula, we indeed obtain EW ~ 5.13.



Comparison: before merging, the delay at channel A is EW, = 4.5 (as
given), the delay at channel B is EWp = 13.875 (as given), and the weighted
average delay is

_ 1/4 1
EW:4 EW4 + /30

Y EWg ~5.61.
1/4+1/30 1/a+1/30 "

Comparing these to EW & 5.13 after merging, we conclude that the delay of
type A messages will become worse after merging, but the delay of type B
messages will improve by a lot and the weighted average delay will improve
somewhat after merging.

(b) [3pt] For messages of type A, would their average sojourn time (from
the moment a message is generated till its transmission is finished) improve
after merging” And for messages of type B?

Solution Before merging, the average sojourn times of type A and type
B messages are, respectively,

ESy=FEW +3=45+3="75,
ESp = EWg + E(N(18,9)) = 13.875 + 18 = 31.875.

After merging, the average sojourn times of type A and type B messages will
be, respectively,

EST = EW +3/2 ~ 5.13 + 3/2 = 6.63,
EST = EW + E[N(18,9))/2] ~ 5.13 + 9 = 14.13.

We conclude that, after merging, the average sojourn time improves for both
types of messages.

(c) [3pt] Will your answers to (a) and (b) change in case the order of
transmission is non-preemptive LIFO presently and will remain such after
merging?

Hint: no new calculation is required.

Solution No because the individual channels as well as the merger channel
are M /G /1 models and PK applies under all non-preemptive non-size based
service disciplines, including FIFO and non-preemptive LIFO. The calcula-

tions above done for FIFO will be the exactly the same for non-preemptive
LIFO.



(d) [5pt] Will your answers to (a) and (b) change in case (the order of
transmission is FIFO presently and will remain such after merging but) af-
ter merging there are start-up delays that are distributed exponentially with
mean 1/6 = 8 seconds? In order to answer this question, do Mean Value
Analysis for the average transmission delay and average number of delayed
transmissions. You can use without proof the fact that the system is stable
and the fraction of time the channel is transmitting equals the load.

To clarify: when, after a period of time with no messages to transmit, a
new message is generated, the channel does not start transmitting immedi-
ately but remains idle for an additional period of time. This additional idling
time is a start-up delay.

Solution The MVA equations for the delayed messages at the merger channel
with Exp(#) start-up delays are:

Little’s law ELT =) EW,
arrival relation EW =px ER+ (1 —p)* EExp(0)+ EL!* EB
E(B?) 1
= — 4+ (1 — -+ FEL'x EB.

The arrival relation above comes up as follows,

- proportion p of messages are generated while the channel is transmitting
(by PASTA) and they have to wait for the remaining transmission time R;
- proportion 1 — p of messages are generated while the channel is idling or
starting up (by PASTA) and they have to wait for the full or remaining
start-up time, Exp(#) in either case (by the memorylessness of Exponential
distribution);

- finally, each message has to wait for full transmission times of messages
they find in the queue in front of them upon arrival (on average E'L? of them
by PASTA).

Solving the MVA equations (plug the Little’s law into the arrival relation),
we get

E(B?) 1 p_E(B
EW = 1— —+AEW x EB EW = —— —.
¥ opp) LT TN A EB < -, 2EB 0
=pEW N—_———
PK as in (a)

Le. to the average delay EW in (a) and the average sojourn times FES,
ES% in (b), we have to add the average start-up delay 1/6 = 8.



Comparison: after merging with start-up delays, the average delay and so-
journ times for type A, type B are

EW =~ 5.13+8 =13.13, ES) ~6.63+8 =14.63, LSy ~ 14.13+8 =22.23.

(a) (b) (b)

Comparing EW to EW,4 = 4.5, EWp = 13.875, EW ~ 5.61, we conclude
that, after merging with start-up delays, there is a slight improvement in de-
lay for type B messages, but the delay of type A messages and the weighted
average delay become much worse. (The answer to (a) changes when start-up
delays are added.)

Comparing ESY, ESE to ESy = 7.5, ESp = 31.875, we conclude that,
after merging with start-up delays, the average sojourn time of type A mes-
sages becomes worse and the the average sojourn time of type B messages
improves. (The answer to (b) changes when start-up delays are added.)



FORMULA SHEET

Erlang distribution. If S, has an Erlang(n, 1) distribution, then

P(S,>t)=) e™ ()" and fs, (t) = pe (:;Lnl
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Residual time till next event. Let X be a generic inter-event time and
R the residual time till next event. Then

x):ﬁ/:P(X>u)du and E(R) =

M/G/1 queue. The waiting time W under FIFO and the busy period BP
under work-conserving disciplines satisfy

_ P E<BZ)_1 P 2 ., VB
EW) = T-,2E(B) 2 1Tp(l +c5)E(B), where ¢ = (EB)?
E(BP) = ;E%B;.

M/M/c queue. The probability of waiting ITy,, waiting time W and so-
journ time S satisfy
(cp)e/¢!

HW = c—1

(1= p) SiZg(cp)i/it + (cp)e /el

1
EW)=1Ilyy ———— and  P(W > t) = Uy e (-2t
Wy =1w o a—p ( ) =Ty
HW _ _ HW —
P(S>t)=— "1 _erenll=nt 4 (1 W ) nt
B=D=1—1=p° UTimaa=g)°

M/G/c/c queue. The blocking probability is

ac/c!

Ble.a) = s i

with a = A E(B) = ¢p.
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