Solutions Midterm exam Stochastic Modelling (X_400646)

Vrije Universiteit Amsterdam Faculty of Science

October 21, 2020

(b) There are two absorbing communicating classes: $\{2\}$ and $\{3,4,5\}$. Each class is aperiodic. The invariant distribution associated with class $\{2\}$ is $\pi=(0,1,0,0,0)$, while the invariant distribution associated with class $\{3,4,5\}$ is $\pi=\left(0,0,\frac{2}{7},\frac{3}{7},\frac{2}{7}\right)$. If the Markov chain starts in state 1, it eventually ends up in the class $\{2\}$ with probability $\frac{1}{3}$, and in class $\{3,4,5\}$ with probability $\frac{2}{3}$. Hence, the limiting distribution in this case is

$$\pi = \frac{1}{3}(0, 1, 0, 0, 0) + \frac{2}{3}(0, 0, \frac{2}{7}, \frac{3}{7}, \frac{2}{7}) = (0, \frac{1}{3}, \frac{4}{21}, \frac{2}{7}, \frac{4}{21}).$$

2.

(a) Let X_n be the investor's capital (in $k \in$) after the *n*-th investment (with X_0 the starting capital).

$$0 \xrightarrow{\frac{1}{3}} 20 \xrightarrow{\frac{2}{3}} 40 \xrightarrow{\frac{2}{3}} 60 \xrightarrow{\frac{2}{3}} 80$$

(b) Define $q_i = P(T_{80} < T_0 \mid X_0 = i)$, where T_N is the first-passage time to state N. We want to know q_{40} . Conditioning on the first step leads to a system of equations for q_{20} , q_{40} and q_{60} , from which we obtain $q_{40} = 4/5$.

3.

(a) By Poisson merging, buses arrive at the bus stand according to a Poisson process with a rate of 9 buses per hour. Hence, the number of buses passing by in half an hour has a Poisson distribution with parameter 9/2. The probability that at least two buses pass by in half an hour is therefore

$$1 - e^{-9/2} - \frac{9}{2}e^{-9/2}.$$

(b) The waiting time for a Number i bus is $T_i \sim \text{Exp}(i)$, where $i \in \{2,7\}$. The waiting times have the lack of memory property, so the probability that exactly three Number 7 buses pass by while you are waiting for a Number 2 bus is

$$P(T_7 < T_2)^3 \times P(T_2 < T_7) = (\frac{7}{9})^3 \times \frac{2}{9}.$$

4. The transient distribution p(t) at time t is the row vector with components $p_j(t) = P(X(t) = j)$, $j \in S$. By conditioning on the state at time s, we get $p_j(s+t) = \sum_{i \in S} p_i(s) p_{ij}(t)$ for each $j \in S$, and hence p(s+t) = p(s) P(t).

5.

(a) Option 1 is to take states (a,b) where a and b are the numbers of passengers waiting at locations A and B, respectively. Option 2 is to take states $n \in \{0,1,2\}$ where n is the total number of passengers waiting for their shuttle bus to leave.

(b) For Option 1, the invariant distribution is

$$p = (p_{0,0}, p_{0,1}, p_{1,0}, p_{1,1}) = (\frac{2}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}).$$

For Option 2, the invariant distribution is

$$p = (p_0, p_1, p_2) = (\frac{2}{5}, \frac{2}{5}, \frac{1}{5}).$$

Hence, the long-run expected number of waiting passengers is equal to 4/5.