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1.

(a) [3 pt.] The transition diagram looks as follows:
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The classes of communicating states are

{1, 2, 5, 6} transient

{3, 4} absorbing

(b) [3 pt.] The states in the absorbing class {3, 4} are periodic with period 2,
hence the limiting distribution does not exist.The occupancy distribution
does exist, because the DTMC is positive recurrent on the absorbing class
(we have a finite state space). The equilibrium equations for the occupancy
distribution are simply

π̂3 = π̂4,

so the occupancy distribution is

π̂ = [π̂1, . . . , π̂6] = [0, 0, 1
2
, 1
2
, 0, 0].

(c) [4 pt.] By conditioning on the first step of the DTMC, and noting that
q3 = q4 = 0, we see that the qi must satisfy the following set of equations:

q1 =
1
3
q2 +

2
3

q2 =
1
3
q5 +

1
3

q5 =
1
3
q1

Solving these equations for q1 gives q1 =
21
26
.
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2.

(a) [2 pt.] The transition diagram looks as follows:
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(b) [4 pt.] The equilibrium equations for the states i > 0 read

πi = (1− p)πi−1,

from which it follows that πi = (1− p)iπ0 for all i > 0.Normalization gives

1 =
∞
∑

i=0

(1− p)iπ0 =
1

p
π0,

hence π0 = p and πi = (1− p)ip for i ≥ 1.

(c) [4 pt.] Let mi denote the expected number of steps until the DTMC
reaches state 3, when the DTMC starts in state i. Our task is to find m0.
By conditioning on the first step of the DTMC, we see that the mi satisfy
the following set of equations:

m0 = 1 + 4
5
m0 +

1
5
m1

m1 = 1 + 4
5
m0 +

1
5
m2

m2 = 1 + 4
5
m0

Possibly the easiest way to solve these equations is to multiply the third by 5,
the second by 25, and the first by 125, which gives

125m0 = 125 + 100m0 + 25m1

25m1 = 25 + 20m0 + 5m2

5m2 = 5 + 4m0

Substituting the third equation into the second, and then the second into the
first, yields m0 = 155.
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3.

(a) [4 pt.] The state diagram looks as follows:
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Using the ‘global balance’ principle, the balance equations are

λp0 = λp1

λpi−1 = 2λpi i = 2, 3, 4

It follows that p1 = p0 and pi =
1
2
pi−1 for i = 2, 3, 4, so that

pi = 21−i p0 for i = 1, 2, 3, 4.

(b) [2 pt.] Normalization: 1 =
∑4

i=0 pi = p0 + (1 + 1
2
+ 1

4
+ 1

8
)p0 = 23

8
p0

gives p0 = 8/23, from which it follows that the probability that an arriving
customer is blocked, by PASTA, is p4 =

1
8
p0 = 1/23.

(c) [4 pt.] We have E(L) =
∑4

i=1 ipi. A short calculation gives E(L) = 26
23
.

We now have (at least) two different approaches at our disposal for finding
the expected sojourn time E(S) of customers who are not blocked:

1. The arrival rate of customers who are not blocked is 22
23
λ, so Little’s

Law tells us that E(L) = 22
23
λE(S), from which it follows that

E(S) =
23

22

1

λ
E(L) =

13

11

1

λ
.

2. Alternatively, an arriving customer has to wait to receive service when
there are either two or three customers in the system upon arrival.
The conditional probabilities of finding two or three customers upon
arrival, given that the arriving customer is not blocked, are 23

22
p2 = 2

11

and 23
22
p3 = 1

11
, respectively, while the expected waiting time in these

two cases is 1/(2λ) or 2/(2λ), respectively. Hence the expected sojourn
time of a customer who is not blocked, is

E(S) =

[

2

11
·
1

2λ
+

1

11
·
2

2λ

]

+
1

λ
=

13

11

1

λ
.

3



4.

(a) [2 pt.] The number of small packets that will arrive in the next 20 mil-
liseconds has a Poisson distribution with parameter 2

5a
· 20 = 8/a. Hence,

the probability that exactly three small packets will arrive within the next
20 milliseconds is

(8/a)3

3!
e−8/a.

(b) [3 pt.] By superposition of Poisson processes, packets arrive according
to a Poisson process with a total rate of 2/(5a) + 2/(25a) = 12/(25a). With
probability 1/6, an arriving packet is large, and with probability 5/6, an
arriving packet is small. The probability that the next two arriving packets
are of different kinds is therefore 1

6
· 5
6
+ 5

6
· 1
6
= 5

18
.

The interarrival time between these two packets is independent of the
time until the first of them arrives, and has an exponential distribution with
parameter 12/(25a). Therefore, the probability that the next two data pack-
ets that arrive are of different kinds and arrive within 25 milliseconds from
each other is given by

5

18
·
(

1− e−25·12/(25a)
)

=
5

18
·
(

1− e−12/a
)

.

(c) [5 pt.] We are dealing with an M/G/1 system, so the expected waiting
time is given by the Pollaczek–Khinchine formula

E(W q) =
ρ

1− ρ

E(B2)

2E(B)
.

Since arriving packets are small with probability 5/6 and large with proba-
bility 1/6, we have that

E(B) =
5

6
· a+

1

6
· 5a =

5

3
a,

so that ρ = λE(B) = 12
25a

· 5
3
a = 4

5
.

Next we need to compute E(B2). First we observe that for large packets,

E(B2
large) = (c2Blarge

+ 1)(EBlarge)
2 =

36

25
· 25a2 = 36a2.

Therefore,

E(B2) =
5

6
· a2 +

1

6
· 36a2 =

41

6
a2.

Substituting this into the Pollaczek–Khinchine formula yields

E(W q) =
4/5

1/5
·

41a2

2 · 6 · (5/3)a
=

41

5
a.
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(d) [5 pt.] A small packet that arrives has to wait for 1) the service of any
small packets that are already waiting in the queue, 2) the residual service
time of any packet (large or small) that is in service upon arrival if the server
is busy. This explains the two terms in the relation

E(W q
small) = aE(Lq

small) + ρE(R).

Little’s Law for small packets says that E(Lq
small) =

2
5a
E(W q

small). Sub-
stituting this into the arrival relation, and using our results from part (c),
we find that

E(W q
small) =

5

3
ρE(R) =

5

3
·
4

5
·
E(B2)

2E(B)
=

4

3
·

41a2

2 · 6 · (5/3)a
=

41

15
a.

When small packets are served LCFS, an arriving small packet has to
wait for the residual service time of any packet that is in service upon arrival,
but also for the entire “busy period” of any small packets that arrive during
this residual service time (where the busy periods consists of handling small
packets only). Therefore, the arrival relation in the LCFS case is

E(W q
small) = ρE(R) +

2

5a
ρE(R) ·

a

1− ρsmall

,

where ρsmall is the fraction of time the server is working on small packets,
that is, ρsmall =

2
5a

· a = 2
5
. Substituting this value and simplifying gives

E(W q
small) =

5

3
ρE(R),

which shows that the expected waiting time of small packets is the same in
the LCFS case as in the FCFS case.
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