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1.

(a) Let X(t) = # of containers in the terminal at time t. Then the CTMC 1pt: formulate
CTMC, state
space and rates

{X(t), t ≥ 0} behaves as an M/M/∞ queue, with arrival rate λ = 15 per
day, and service rate µ = 1/3 per day. The state space is I = {0, 1, 2, . . . }.

2pt: diagram

The transition rate diagram is as follows:

0 1 2 3 . . .

15 15 15 15

1/3 2/3 3/3 4/3

(b) Using the “global balance principle”, the balance equations are

1pt: formulate
balance eqns.

15pi−1 = (i/3)pi, i = 1, 2, 3, . . .

Therefore, for i ≥ 1,

1pt: express pi in
terms of p0pi =

15

i/3
pi−1 =

45

i
pi−1 =

45

i

45

i− 1
pi−2 = · · · =

45i

i!
p0.

This is also valid for i = 0. The normalizing equation therefore tells us that

1pt: perform
normalization

∞
∑

i=0

pi =
∞
∑

i=0

45i

i!
p0 = e45 p0 = 1.

Hence

1pt: formulate
final solution
(identifying it as
Poisson is not
required)

p0 = e−45 and pi = e−45 45
i

i!
.

In other words, the equilibrium distribution of the number of containers in
the terminal is Poisson with parameter 45.
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(c) The situation is now described by an M/G/c/c queue (an Erlang-B 1pt: identify as
Erlang-B with
correct params.

model), with capacity c = 100, arrival rate λ = 30, and mean service time
E(B) = 3. The total load is then a = λE(B) = 90.

1

2
pt: state

insensitivity

1pt: give equil.
distribution

The equilibrium distribution of the Erlang-B model is insensitive to the
service time distribution. Therefore, we can repeat (a)–(b) to determine the
equilibrium distribution, with λ = 30 instead of 15, and state space restricted
to I = {0, 1, 2, . . . , 100}. Hence the equilibrium distribution is

pi =
90i

i!
p0 (i ∈ I), with p0 =

[

100
∑

i=0

90i

i!

]

−1

.

1

2
pt: blocking

probability

The blocking probability is given by

p100 = B(100, 90) =
90100/100!
∑100

i=0 90
i/i!

.

2.

(a) The time until the current service has been completed is the residual 1pt: use residual
time + formulaservice time R corresponding to the service time B. It satisfies

P (R ≤ t) =
1

E(B)

∫ t

0

P (B > u) du.

Since B is uniform on (0, b), we have E(B) = b/2 and P (B > u) = (b− u)/b

1 1

2
pt: calculation

for u ∈ (0, b). Therefore, for t ∈ (0, b),

P (R ≤ t) =
2

b

∫ t

0

b− u

b
du =

2

b2
[

bu− 1
2
u2
]t

0
=

2

b2
(

bt− 1
2
t2
)

.

Finally, for t ≥ b, P (R ≤ t) = 1, of course. 1

2
pt: case t ≥ b

(b) The system is an M/G/1 queue, for which the expected waiting time is 1

2
pt: identify as

M/G/1

1pt: formula

given by the Pollaczek–Khintchine formula

E(W q) =
ρ

1− ρ

E(B2)

2E(B)
.

We have λ = 3/(2b) and E(B) = b/2, so that the load is ρ = λE(B) = 3/4. 1

2
pt: find ρ

1pt: calc. EB2

Furthermore, the second moment of the service time is

E(B2) =

∫ b

0

x2

b
dx =

1

3

x3

b

∣

∣

∣

b

0
=

1

3
b2.

Substituting all this into the formula for the expected waiting time, we obtain

1pt: calc. EW q

E(W q) =
3/4

1/4

b2/3

b
= b.
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(c) In the pooling situation, customers arrive according to a Poisson process
1pt: determine
p1 and p2

with rate λ1+λ2 =
3
4
+ 3

2b
= 3(b+2)

4b
. The probability that an arriving customer

is of type 1 is

p1 =
λ1

λ1 + λ2

=
3

4

4b

3(b+ 2)
=

b

b+ 2
,

so the probability that an arriving customer is of type 2 is p2 = 1−p1 =
2

b+2
.

1pt: calc. EB

Since the service times are uniform on (0, 1) for type 1 and uniform
on (0, 1

2
b) for type 2, the expected service time of a customer is

E(B) = p1 ×
1

2
+ p2 ×

b

4
=

b

b+ 2

1

2
+

2

b+ 2

b

4
=

b

b+ 2
.

Therefore, the load is ρ = λE(B) = 3/4 (as before). 1

2
pt: calc. ρ

1pt: calc. EB2

From part (b) we see that the second moment of a random variable that
is uniform on (0, d) is d2/3. Hence

E(B2) = p1 ×
1

3
+ p2 ×

b2

12
=

b

b+ 2

1

3
+

2

b+ 2

b2

12
=

2b+ b2

6(b+ 2)
=

b(b+ 2)

6(b+ 2)
=

b

6
.

Combining everything in the Pollaczek–Khintchine formula, we get

1

2
pt: calc. EW q

E(W q) =
3/4

1/4

b/6

2b/(b+ 2)
=

b+ 2

4
.

1pt: find desired
range of b

From part (b) we know that in the “no pooling” situation, the expected
waiting times of customers of type 1 and 2 are, respectively, 2 and b. So both
types of customers are better off in the “pooling” situation if and only if

b+ 2

4
< 2 and

b+ 2

4
< b,

or in other words, when b < 6 and b > 2/3.

3.

(a) If the arrival process is Poisson with rate λ, service times have an ex-

1pt: explanation
arrival relation

1pt: arrival rel.

ponential distribution with parameter µ, and the system is stable, then the
fraction of time the server is busy serving customers must be ρ = λ/µ. An
arriving customer has to wait for the service of all customers who are waiting
in the queue. Moreover, if the server is serving a customer upon arrival, he
also has to wait for completion of this service, and otherwise he has to wait
for the server to switch from his current task to serving customers. Hence,
the arrival relation is

E(W q) = E(Lq)
1

µ
+ ρ

1

µ
+ (1− ρ)

1

θ
.
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1

2
pt: state Little

1 1

2
pt: use Little

& solve for ELq

Using Little’s law E(Lq) = λE(W q), we now get

E(Lq) = λE(W q) = ρE(Lq) + ρ2 + (1− ρ)
λ

θ
.

Solving for E(Lq) finally gives

E(Lq) =
ρ2

1− ρ
+

λ

θ
.

(b) The transition rate diagram looks as follows:

2pt: diagram

2,0 3,0 . . .

2,1 3,1 . . .1,1

1,0

0,0

λ

λ λ

θ θθ

µ
µ µ µ

λ λ λ

λ

2pt: balance eq.
The (detailed) balance equations are

λp0,0 = µp1,1

(λ+ µ)p1,1 = θp1,0 + µp2,1

(λ+ θ)pi,0 = λpi−1,0 (i = 1, 2, 3, . . . )

(λ+ µ)pi,1 = θpi,0 + λpi−1,1 + µpi+1,1 (i = 2, 3, 4, . . . )

(c) Observe that as long as θ > 0, the Markov chain can never get “stuck”

1pt: explain we
need µ > λ

1pt: explain
θ > 0 suffices

on the states (i, 0), i ≥ 0: it will always (eventually) reach one of the states
where Y (t) = 1. Once the Markov chain is in this part of the state space, it
moves “up” at rate λ and “down” at rate µ until it reaches (0, 0) again. To
make the system stable, it therefore suffices that θ > 0 and µ > λ (since the
latter prevents the number of customers in the system from blowing up).

(d) The constant C is determined by the normalizing equation:
1pt: observe C is
determined by
normalizing eqn.
and formulate
normalizing eqn.

∞
∑

i=0

pi,0 +
∞
∑

i=1

pi,1 = 1.

Noting that the formula for pi,1 reduces to zero for i = 0, we can actually let
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the second sum start from i = 0 as well, which gives us

1 =
∞
∑

i=0

(

pi,0 + pi,1
)

=
∞
∑

i=0

[

µ− λ− θ

λ+ θ

(

λ

λ+ θ

)i

+

(

λ

λ+ θ

)i

−

(

λ

µ

)i
]

C

=
∞
∑

i=0

[

µ

λ+ θ

(

λ

λ+ θ

)i

−

(

λ

µ

)i
]

C

=

[

µ

λ+ θ

1

1− λ/(λ+ θ)
−

1

1− λ/µ

]

C

=

[

µ

λ+ θ

λ+ θ

θ
−

µ

µ− λ

]

C

=
µ(µ− λ)− µθ

θ(µ− λ)
C

=
µ

θ

µ− λ− θ

µ− λ
C.

Therefore,

2pt: calc. the
sum over the
state space

1pt: determine
C and p0,0

C =
θ

µ

µ− λ

µ− λ− θ
hence p0,0 =

µ− λ− θ

λ+ θ
C =

θ

µ

µ− λ

λ+ θ
.
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