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Exercise 1

(a) [2 pt.] See Figure 1 for the transition diagram. The classes of communicating
states are {1,2,3} (absorbing), {4}, and {5,6} (transient).

Moreover, P(X,, =1 | Xo=1)=0forn=1,2and P(X,, =1 | Xg=1) =
2 (D" forn = 3,4,5.

(b) [3 pt.] Both the limiting distribution and occupancy distribution exist, since
the DTMC is aperiodic, positive recurrent (finite state space), and there is one
absorbing class. Also, note that m; = ; and 74 = 75 = mg = 0. The remaining
probabilities can be found using the balance equations

2 1
m| = 73, N9 =TT, T3=T2+ -T3.
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Figure 1: State diagram of the DTMC of exercise la.
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Figure 2: State diagram of the DTMC of exercise 2a.

E.g. expressing everything in terms of w3 and using normalization gives the
equation 73 (% + % + 1) = 1, yielding the final result

™T=T = 7377777’ .

(c) [2 pt.] The simplest option is to add a transition from one of the states 1,2, 3
to state 4.

Exercise 2

(a) [3 pt.] Let X,, be the number of open data science projects at the end of day
n. Then {X,,n = 0,1,...} is a discrete-time Markov chain (DTMC) on the
state space I = {0,1,...,4}. The state diagram with transition probabilities
is given in Figure 2. The balance equations are:

7T0=§7T0+7T3+7T4
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7T1:§7T1+§7['0
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(b) [2 pt.] Define m; as the expected number of days to hit the set {3,4} given



that the DTMC is now in state ¢. We then have

1
m0:1+§m0+§m1+6m2

m1:1+§m1+§m2

m2:1+§m2

Solving ‘backward’, we first obtain msy = %, then m; = %1, and finally the

desired result mg = %

(c) [2 pt.] Extend the state space by adding a state * denoting that the team
works for the second consecutive day on a data science project (at day n).
Then {X,,,n =0,1,...} is a DTMC on state space {0,1,...,4,}. The one-
step transition probability matrix reads

/3 1/ 1/ 0 O 0

0 13 12 16 0 0

P 0 0 13 1 1/ 0
»p 0 0 0 0 1—p
»p 0 0 0 0 1—p
1 0 0 0 O 0

Exercise 3

Define N;(t) as the number of arriving customers for server ¢ during [0,¢], ¢ = 1, 2.
Due to thinning, it holds that Ni(t) PP(2/3) and Na(t) PP(4/3).

(a) [2 pt.] From the above, the probability that no customer arrives at server 1
during [0, ¢] is
P(N1(2) = 0) = e 2 = 7',

Due to independence, we also have
P(N1(2) =0; No > 2) =P(N1(2) =0) (1 — P(N2(2) < 1))
— (1 e 8/3))
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74/3 o 747
e e 3 .



Figure 3: State diagram of the CTMC of exercise 4a.

(b) [2 pt.] Let N(¢) be the total number of arriving customers during [0, ¢]. Con-
ditioning on the availability of server 1 yields that the probability of 1 arrival
during [0, 2] at server 2 equals

3 1
TP(V2(2) =1) + (P(N(2) =1) =2¢7 47"
(c) [2 pt.] Let S; be the service time of customer i, i = A, B. Then P(S4 <
Sp) = m/fl—luz‘ If A finishes its service, the remaining service time of B is still

exponentially distributed with rate po due to the lack of memory. Hence,

P(Sy+t < Sp)=P(Sa < Sp)P(Sp — Sa>t|Sp>Sa) = —FL enat,
p1 + p2

Exercise 4

(a) [3 pt.] Let X(¢) be the number of vehicles occupied at time ¢. Then, {X (¢),t >
0} is a continuous-time Markov chain on state space {0, 1,2}. The state dia-
gram with transition rates can be found in Figure 3.

The balance equations for states 0 and 2 are: 2py = 4p; and 8py = 2p;.
Expressing everything in terms of py and using normalization gives po(1 +
1/2 4 1/8) = 1, such that po = 8/13. Now, p; and po follow directly given the
required results.

(b) [2 pt.] The idle costs are k(2po + p1) = 29k. The costs for both vehicles

occupied are spy = %S. Hence, the long-run average costs are %k‘ + 1—135.

(c¢) [2 pt.] Let Y(t) be the number of vehicles being cleaned at time t. Then
{(X(t),Y(t)),t >0} is a CTMC with transition diagram given in Figure 4.



Figure 4: State diagram of the CTMC of exercise 4c.



