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Exercise 1.

(a)
(b)

The system is stable for A\p/u < 1.

The state diagram with the transition rates is as follows:
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Figure 1: State diagram Exercise 1(b).

The balance equations are then as follows:
Apo = pp1
AD X pic1 = up; 1=2,3,...

Expressing in terms of pg yields, for : = 1,2, ...,
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Normalization provides
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Working out the summation yields the required py.

For p = 0 it is typically the easiest to draw the state diagram again and set up the
balance equations from there: Apy = pp;. This directly gives p;1 = Apo/p. Applying
normalization yields (1 + A/u)po = 1, or
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Due to PASTA it holds that the fraction of customers lost is p1 = A\/(A + p).



Exercise 2.
(a) Define X (¢) as the number of busy fire-fighting vehicles at time ¢. Then, {X (¢),t > 0}
isa CTMC on I ={0,1,...} with transition diagram as presented in Figure 2.
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Figure 2: State diagram of Exercise 2(a).

(b) The integral time is then the sum of 3 exponential random variables with rate 1, or in
other words it follows an Erlang(3,1) distribution.

There are multiple options to model this as a CTMC. The simplest is
Y;(t) = the number if fire-fighting vehicles in phase i, i = 1,2, 3.
Then {(Y1(t), Ya(t), Y3(t)),t > 0} is a CTMC on I = {0, 1,...}3.
(¢) This corresponds with an M/M/c/c model, or Erlang B.
The offered load (average amount of work offered) is here a = AEB = 3/2 x 3 = 4.5.
The fraction of alarms taken over by neighboring regions is then
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The Erlang B model is insensitive to the distribution of the service time (with the same

expectation), thus it has no impact on the long-run fraction of alarms taken over if the
times are as described in part (b).

Exercise 3.
(a) For the load it holds that p = 3 x b= 3. Thus,
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(b) Using Little’s law gives
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Make a sketch (EW? increases linearly in b and EL? is constant). The load does not

depend on b, explaining that EL? is constant. When b changes, only the time scale

changes (the speed at which events occur in the system), thus EW? changes linearly.
(c) First, determine the first 2 moments of B:
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Then, the expected waiting time is
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For the expected sojourn time, we have
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Exercise 4.

(a) The time until the next service completion, given that both servers are occupied, is
exp(2u) distributed, hence
P(R > t) = e 2.

(b) The arrival relation is
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with interpretation:
I E +# customers in the queue
II  E time to serve 1 customer (super-server)
III probability of waiting
IV residual time until first service completion
Applying Little’s law (EL? = AEWY):
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Isolating EWY gives
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(c) The arrival relation for LCFS-NP is
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with interpretation

I probability of waiting (both servers occupied)
II  residual time R until first service completion
IIT E # arrivals during R
IV each customers has an extended service time, similar to a busy period
(expected time until server is ‘available’ again to serve customers already waiting)



