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Exercise 1.

(a) The system is stable for λp/µ < 1.

(b) The state diagram with the transition rates is as follows:
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Figure 1: State diagram Exercise 1(b).

The balance equations are then as follows:

λp0 = µp1

λp× pi−1 = µpi i = 2, 3, . . .

Expressing in terms of p0 yields, for i = 1, 2, . . .,

pi =
λp

µ
pi−1 =

(
λp

µ

)i−1

p1 =

(
λp

µ

)i 1

p
p0.

Normalization provides

p0 + p0

∞∑

i=1

(
λp

µ

)i 1

p
= 1.

Working out the summation yields the required p0.

(c) For p = 0 it is typically the easiest to draw the state diagram again and set up the
balance equations from there: λp0 = µp1. This directly gives p1 = λp0/µ. Applying
normalization yields (1 + λ/µ)p0 = 1, or

p0 =
µ

λ+ µ
, and p1 =

λ

λ+ µ
.

Due to PASTA it holds that the fraction of customers lost is p1 = λ/(λ+ µ).
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Exercise 2.

(a) Define X(t) as the number of busy fire-fighting vehicles at time t. Then, {X(t), t ≥ 0}
is a CTMC on I = {0, 1, . . .} with transition diagram as presented in Figure 2.
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Figure 2: State diagram of Exercise 2(a).

(b) The integral time is then the sum of 3 exponential random variables with rate 1, or in
other words it follows an Erlang(3,1) distribution.

There are multiple options to model this as a CTMC. The simplest is
Yi(t) = the number if fire-fighting vehicles in phase i, i = 1, 2, 3.
Then {(Y1(t), Y2(t), Y3(t)), t ≥ 0} is a CTMC on I = {0, 1, . . .}3.

(c) This corresponds with an M/M/c/c model, or Erlang B.
The offered load (average amount of work offered) is here a = λEB = 3/2 × 3 = 4.5.
The fraction of alarms taken over by neighboring regions is then

(4.5)c/c!
∑c

j=0
(4.5)j/j!

.

The Erlang B model is insensitive to the distribution of the service time (with the same
expectation), thus it has no impact on the long-run fraction of alarms taken over if the
times are as described in part (b).

Exercise 3.

(a) For the load it holds that ρ = 3

4b
× b = 3

4
. Thus,

EW q =
1

2
(1 + c2B)EB

ρ

1− ρ
=

1

2
b

3/4

1− 3/4
=

3

2
b.

(b) Using Little’s law gives

ELq = λEW q =
3

4b
×

3

2
b =

9

8
.

Make a sketch (EW q increases linearly in b and ELq is constant). The load does not
depend on b, explaining that ELq is constant. When b changes, only the time scale
changes (the speed at which events occur in the system), thus EW q changes linearly.

(c) First, determine the first 2 moments of B:

EB =
1

2
×

1

2
b+

1

2
×

3

2
b = b

EB2 =
1

2
×

(
b

2

)2

+
1

2
×

(
3b

2

)2

=
5

4
b2

Then, the expected waiting time is

EW q =
EB2

2EB

ρ

1− ρ
=

5b2/4

2b

3/4

1− 3/4
=

15

8
b.
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For the expected sojourn time, we have

EW = EW q + EB =
15

8
b+ b =

23

8
b.

Exercise 4.

(a) The time until the next service completion, given that both servers are occupied, is
exp(2µ) distributed, hence

P(R > t) = e−2µt.

(b) The arrival relation is

E[W q] = E[Lq]
︸ ︷︷ ︸

I

×
1

2µ
︸︷︷︸

II

+ ΠW
︸︷︷︸

III

×
1

2µ
︸︷︷︸

IV

.

with interpretation:

I E # customers in the queue
II E time to serve 1 customer (super-server)
III probability of waiting
IV residual time until first service completion

Applying Little’s law (ELq = λEW q):

EW q = EW q ×
λ

2µ
+ΠW

1

2µ
.

Isolating EW q gives

EW q = ΠW

1

2µ(1− ρ)
with ρ =

λ

2µ
.

(c) The arrival relation for LCFS-NP is

E[W q] = ΠW
︸︷︷︸

I







1

2µ
︸︷︷︸

II

+
1

2µ
λ

︸︷︷︸

III

E[BP ]
︸ ︷︷ ︸

IV







,

with interpretation

I probability of waiting (both servers occupied)
II residual time R until first service completion
III E # arrivals during R
IV each customers has an extended service time, similar to a busy period

(expected time until server is ‘available’ again to serve customers already waiting)
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