X₄00004 - Statistics Final

20 December 2022

Instructions:

- The exam is to be solved **individually**.
- Please write clearly and in an organised way: illegible answers cannot be graded.
- This is an exam on a mathematical subject, so support your answers with **computations** rather than words whenever possible.
- You should report all relevant computations and justify non-trivial steps.
- This is a **closed notes exam**; you are only allowed to have one A4 sheet with **handwritten** notes with you.
- You may use a calculator; no cellphone, tablet, computer, or other such device is allowed.
- There are 4 pages in the exam questionnaire (including this one) and you have 2 hours (120 minutes) to complete the exam.
- The exam consists of 13 questions spread throughout 3 problems.
- The number of points per question is indicated next to it for a total of 100 points.
- The problems are not necessarily ordered in term of difficulty. I recommend that you quickly read through all problems first, then do the problems in whatever order suits you best.
- Remember to **identify** the answer sheets with your name and student number.

Prob.I: Pivots are useful tools to build statistical tests but they are not always readily available. The Central Limit Theorem (CLT) provides another tool to build (approximate) pivots.

Consider a random sample X_1, \ldots, X_n of *counts*. The Poisson distribution is usually a good model for counts, so assume that your observations are distributed like $X \sim \text{Poisson}(\theta)$, where $\theta > 0$ is some unknown model parameter. You are reminded that for $i = 0, 1, 2, \ldots$,

$$f_{\theta}(i) = \frac{\theta^{i}}{i!}e^{-\theta}, \quad \text{and} \quad F_{\theta}(i) = \mathbb{P}_{\theta}(X \leq i) = \sum_{j=0}^{i} \mathbb{P}(X = j),$$

are the probability mass function of X and the cumulative distribution function of X, respectively. Remember that this means that $\mathbb{E}_{\theta}X = \mathbb{V}_{\theta}X = \theta$.

8 pts (a) Let $X \sim \operatorname{Poisson}(\alpha)$ and $Y \sim \operatorname{Poisson}(\beta)$, two independent random variables and $\alpha, \beta > 0$. Use the fact that $\mathbb{P}(X+Y=i) = \sum_{j=0}^{i} \mathbb{P}(Y=j)\mathbb{P}(X=i-j)$ to show that $X+Y \sim \operatorname{Poisson}(\alpha+\beta)$. Hint: Remember the binomial theorem which says that $\sum_{j=0}^{i} \binom{i}{j} x^{j} y^{i-j} = (x+y)^{i}$.

6 pts (b) From (a), $n\bar{X} = \sum_{i=1}^{n} X_i \sim \text{Poisson}(n\theta)$. Is $T = n\bar{X} - n\theta$ a pivot for θ ? Justify your answer.

6 pts (c) What does the CLT tell you about the distribution of \bar{X} ? Be explicit and justify your answer.

10 pts (d) Show that the test that rejects $H_0: \theta = 1$ against $H_1: \theta > 1$ when $\bar{X} > 1 + z_{1-\alpha}/\sqrt{n}$ has significance level approximately α for large n. Here, z_{α} represents the quantile of level $\alpha \in (0,1)$ from standard Normal distribution.

Prob.II: Suppose that you start a small company that wants to develop a more environmentally friendly alternative to styrofoam peanuts; cf. Figure 1. This material is used as a filler in packages to protect the contents from impact.

Figure 1: Example of styrofoam peanuts.

You are interested in testing the compressibility of the material: you want this material to be compressible to absorb impact but not too compressible otherwise you need to use a lot of it per package.

You have arrived at what you think is a good product and run some tests to measure the compressibility of the material when about 25% of the package consists of peanuts. At this stage you want to do some quality control. You collect some compressibility data X_1, \ldots, X_n which you model as a random sample distributed like $X \sim N(\mu, \sigma^2)$. (Units of each observation is megapascal, MPa.)

4 pts (a) The following hypothesis are to be tested,

$$H_0: \mu = 33 \,\text{MPa}, \quad \text{vs} \quad H_1: \mu \neq 33 \,\text{MPa}.$$

Explain the (i) meaning of picking these specific null/alternative, and (ii) what conclusions can be drawn from a statistical test for them.

- 8 pts (b) Suppose that you use the following rule for rejection: $|\bar{X} 33| > c$, for some appropriate c. (i) Justify why this is appropriate as a rejection rule, and (ii) what is the distribution of the test statistic \bar{X} under the null if σ^2 were known?
- 12 pts (c) It is not realistic to assume that you know σ^2 so you cannot proceed using the test statistic from (b). Instead, use the pivot $|\bar{X} 33|/S_n$, where S_n is some appropriate estimator for σ . Compute the probability of rejection using $|\bar{X} 33|/S_n > c$ under the null **exactly** without using knowledge of σ^2 . (This probability will depend on c and eventually other known quantities.)
- **8 pts** (d) Show that setting c to the specific choice $c_{\alpha} = F^{-1}(1 \alpha/2)/\sqrt{n}$ gives you a test of level α where F is an appropriate CDF. (Be explicit about what F is.)
- 8 pts (e) Define the power $\pi(\mu)$ of the test of level α from (d). (You do not need to compute the underlying probability but make your expression explicit.) What is the value of $\pi(33)$ and why?

Prob.III: Suppose that you work at the HR department of a company and that you have been tasked with analysing the effectiveness of a specific training that some workers at the company follow. To perform this task, you are given the data in Figure 2.

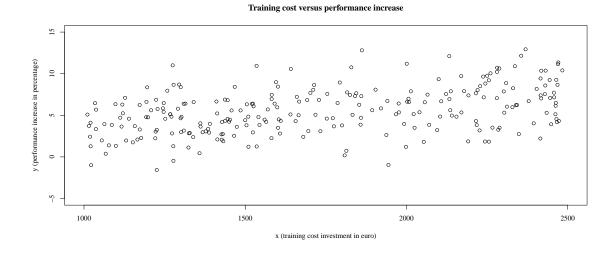


Figure 2: Training cost and respective performance increase for 256 persons.

In the pairs (x_i, y_i) , i = 1, ..., 256: the x_i represents the cost of a training (in euro) for an employee, and y_i represents respective perceived gain in productivity for that same employee. A few numerical summaries for the data: $n\bar{x} = 445574$, $n\bar{y} = 1417.917$, $SS_{xx} = 52451946$, $SS_{yy} = 1944.043$, and $SS_{xy} = 136344.9$. There are n = 256 measurements in total.

To answer the questions below you may need one or more of the following quantiles: $t_{254,0.01} = -2.341118$, $t_{254,0.0125} = -2.254768$, $t_{254,0.025} = -1.969348$, $t_{254,0.05} = -1.650875$.

6 pts (a) Suppose that you would like to use the Simple Linear Regression model to derive a formula that allows you to model the relation between investment (x) and the corresponding performance gain (Y). In a linear regression model you assume that

$$Y_i = \alpha + \beta x_i + \sigma \epsilon_i, \quad i = 1, \dots, n,$$

where $\alpha, \beta, \sigma \in \mathbb{R}$ are unknown, and the ϵ_i are random error terms. In order for Simple Linear Regression to be an adequate model here, what should you assume about: i) the relation between (x_i, Y_i) and (x_j, Y_j) , $i \neq j$; ii) the expectation of the noise terms ϵ_i ; iii) the variance of the noise terms ϵ_i .

- 8 pts (b) Consider the data from Figure 2 and suppose that the assumptions from (a) hold. (i) Based on the data, what are your estimates for α and β , the parameters of the model? (ii) What insight does the estimate of β give you?
- 6 pts (c) Estimate the variance of the noise σ^2 , and the coefficient of determination R^2 under the SLR modelling assumption.
- 10 pts (d) It seems quite important to test if $\beta = 0$. Test if $H_0: \beta = 0$ against $H_1: \beta \neq 0$ at significance level 0.05. What do you conclude in terms of the test and what is the implication in the context of the SLR model? You should use the fact that

$$\sqrt{SS_{xx}}\frac{\hat{\beta}-\beta}{\hat{\sigma}}\sim t_{n-2}.$$