
X 400004 - Statistics

Solutions to the Final

21 December 2021

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only. Your answers during the
actual exam should be complete and your steps justified. Keep that in mind when preparing
for upcoming exams, and when you write your own answers while preparing for them. As
usual, take solutions with a grain of salt: there might be typos, and there are typically
different ways to approach each question.

Prob.I: Nobody likes waiting, but constantly checking to see if something is ready is also no fun... It might
therefore be useful to construct upper confidence interval for expected waiting times. In this question
you are asked to do just this.

Consider a random sample X1, . . . , Xn of waiting times. The exponential distribution is usually a
good model for waiting times, so assume that your observations are distributed like X ∼ Exp(θ),
where θ > 0 is some unknown model parameter. You are reminded that for x > 0,

fθ(x) = F ′θ(x) = θe−θx and Fθ(x) = Pθ(X ≤ x) = 1− e−θx,

are the probability density function of X and the cumulative distribution function of X, respectively.
Note that with this parametrisation, the expected waiting time is EX = 1/θ.

(a) Use the fact that for any random sample Y1, . . . , Yn distributed like Y you have that8 pts

P(Y(1) > y) = P(Y1 > y, . . . , Yn > y) = P(Y1 > y)× · · · × P(Yn > y) = {1− P(Y ≤ y)}n,

to show that T = nθX(1) ∼ Exp(1). (Remember that X(1) is just shorthand notation for the
sample minimum, i.e., X(1) = min{X1, . . . , Xn}.)
Solution: If we follow the recommendation and apply the relation to Yi = nθXi so
that Y(1) = nθX(1) we can conclude that

Pθ(nθX(1) > y) = {Pθ(nθX > y)}n = {Pθ
(
X > y/(nθ)

)
}n = {1− Pθ

(
X ≤ y/(nθ)

)
}n.

Since X ∼ Exp(θ), we conclude that the above is just

{1− Fθ
(
y/(nθ)

)
}n = {exp

(
− θy/(nθ)

)
}n = exp

(
− nθy/(nθ)

)
= exp(−y) = 1− F1(y)

From here we conclude that Pθ(nθX(1) ≤ y) = F1(y) , which is equivalent to nθX(1) ∼
Exp(1) as we wanted to show.
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(b) Justify why T is a pivot for θ.4 pts

Solution: The quantity T is a function of the data and θ and has a distribution
that is known to us and does not depend on any unknown parameters . This is
exactly the definition of T being a pivot for θ.

(c) Let eα, α ∈ [0, 1], represent the quantile of level α of an Exp(1) distribution so that, by definition,8 pts
F1(eα) = α. Prove that the interval

[
0, nX(1)/eα

]
is a (1−α)× 100% upper confidence interval

for the expected waiting time.

Solution: Since
[
0, nX(1)/eα

]
is clearly an upper confidence interval , we have to

show that it has the correct level. Since the expected waiting time is 1/θ, this means
that we have to show that Pθ

([
0, nX(1)/eα

]
3 1/θ

)
= 1 − α. This probability is the

same as:

Pθ
(
0 ≤ 1/θ ≤ nX(1)/eα

)
= Pθ

(
1/θ ≤ nX(1)/eα

)
= Pθ

(
eα ≤ nθX(1)

)
= 1− F1(eα) = 1− α,

where we use that, by definition, F1(eα) = α, and that nθX(1) ∼ Exp(1).

(d) Suppose that you have collected the sample {1.12, 0.05, 1.07, 0.82} of waiting times. Use the8 pts
confidence interval from (c) to test at significance level 0.05 the hypotheses: H0 : 1/θ = 2 vs
H0 : 1/θ > 2. (To answer this question you may need one or more of the following quantiles:
e0.01 = 0.0101, e0.05 = 0.0513, e0.95 = 2.9957, e0.99 = 4.6052.)

Solution: By definition of the confidence interval, for any combination of n, α, θ, if
the data comes from Exp(θ), then the chance that

[
0, nX(1)/eα

]
does not contain 1/θ

is exactly α . To test the hypotheses above at significance level 0.05, we just have to
check if 2 belongs to the interval

[
0, nX(1)/eα

]
=
[
0, 4 × 0.05/e0.05

]
= [0, 3.8991] ; since

it does, we cannot reject H0 at level 0.05.

Prob.II: Suppose that you run a small company and that, right now, when there is an incident at work you deal
with it personally. You do enjoy directly helping your staff but this can be quite time consuming...

Suppose that you model the weekly number of incidents at work using the Poisson distribution. After
n weeks, you have collected a dataset X1, . . . , Xn which you model as a random sample distributed
like X ∼ Poisson(θ), θ > 0. Remember that this means that EθX = VθX = θ, and that the
probability mass function of X is

fθ(x) = Pθ(X = x) =
θx

x!
e−θ, x = 0, 1, 2, . . . .

Suppose that your patience breaks down if you have to deal with more than 5 incidents, on average,
per week. To decide, in a data-driven way, if indeed there are on average more than 5 incidents per
week, you will test the hypotheses:

H0 : θ = 5, vs H1 : θ > 5.

(Remember that θ is just the expected waiting time, EθX.) If you reject the null hypothesis (and
thus accept the alternative), you will go ahead and will start delegating this work to someone else.

Consider, throughout, the following statistical test: you reject the null hypothesis H0 if, for some
appropriately chosen C,

T > C, where T =
n∑
i=1

Xi.
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(To answer the following questions you may need one or more of the following quantiles: z0.01 = −2.33,
z0.0125 = −2.24, z0.025 = −1.96, z0.05 = −1.64.)

(a) What is the distribution of the test statistic T under our modelling assumption? and what is4 pts
the distribution of T specifically under the null? Hint: use the fact that if X ∼ Poisson(θ1),
Y ∼ Poisson(θ2), and X and Y are independent, then X + Y ∼ Poisson(θ1 + θ2).

Solution: Using the tip n−1 times, since X1, . . . , Xn ∼ Poisson(θ), then T =
∑n

i=1Xi ∼
Poisson(nθ) . Specifically under H0, where θ = 5, T ∼ Poisson(5n) .

(b) Write down the probability of rejecting H0 as a sum of probabilities. What choices for C lead12 pts
to a test with probability of type I error at most α? Among those choices, which choice leads
to a test with the lowest probability of a type II error? (In both cases just describe C.)

Solution: If we reject when T > C, then the probability of rejecting under H0 is
the probability that T > C computed under the assumption that T ∼ Poisson(5n).
This is

P5(T > C) =

∞∑
i>C

P5(T = i) =

∞∑
i=0
i>C

P5(T = i) =

∞∑
i=0
i>C

(5n)i

i!
e−5n.

So, under H0, P5(T > C) is 1 if C < 0, and decreases as C increases. This means that
if we pick C so that P5(T > C) ≤ α then also P5(T > C + 1) ≤ α. If m is the smallest
integer so that P5(T > m) ≤ α, then any C ∈ {m,m + 1, . . . , n} gives us a test with
probability of type I error below α . The larger the rejection region, the smaller the
probability of a type II error so picking C = m leads to the test with the smallest
probability of a type II error.

(c) Defining C as in (b) is not very explicit. Under our modelling assumption, the Central Limit6 pts
theorem tells us that if the data comes from Poisson(θ), then we can approximate

Pθ
(
T − nθ√

nθ
> z1−α

)
= Pθ

(
T − ET√

VT
> z1−α

)
≈ 1−Φ(z1−α) = 1− (1−α) = α, α ∈ (0, 1),

with the approximation getting better as n grows. Here, Φ represents the CDF of the standard
normal distribution so that, by definition, Φ(zα) = α. Use this to show C = 5n + 1.64

√
5n

ensures that the type I error of the resulting test is (approximately) α = 0.05.

Solution: From what we are told, if we are under H0 so that θ = 5,

P5

(
T − 5n√

5n
> z1−0.05

)
≈ 0.05, so that P5

(
T > 5n+ z1−0.05

√
5n
)
≈ 0.05.

We can then just take C = 5n + z1−0.05
√

5n = 5n − z0.05
√

5n = 5n + 1.64
√

5n, where we
use that z1−α = −zα.

(d) Use the approximation from (c) to approximate the power of the test. Make a sketch of the12 pts
power π(θ) as a function of θ. You don’t need to get the shape right, just make sure that: i)
you are explicit about what π(θ) is when θ is close to 5, and that ii) you get the monotonicity
of π(θ) right. Solution: The power of the test is the probability of rejecting under
the alternative as a function of θ, i.e., π(θ) = Pθ(T > 5n + z1−0.05

√
5n) with this has
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to be computed under the assumption that T ∼ Poisson(nθ), so by centering with nθ
and scaling with

√
nθ,

π(θ) = Pθ

(
T − nθ√

θn
>

(5− θ)n√
θn

+ z1−0.05

√
5

θ

)
≈ 1− Φ

(
(5− θ)n√

θn
+ z1−0.05

√
5

θ

)
.

About the sketch, the argument of Φ above clearly decreases with θ, and Φ is an
increasing function so π(θ) increases with θ. Furthermore, for θ ≈ 5 the above
simplifies to 1− Φ(z1−0.05) = 0.05. So a sketch of π as a function of θ should start at
the point (5, 0.05) , and then increase as θ increases .

(e) Suppose now that you collected data for two years (n = 104 weeks) and that the test statistic10 pts
took the value t = 581. Use the approximation from (c) to approximate the p-value of the test.
Based on this, what is the conclusion of the test at significance level α = 0.05? Solution: By
definition, the p-value is the smallest significance level α at which we would reject
H0 when observing t = 581 . We reject at significance level α if 581 > 5n+ z1−α

√
5n .

If α leads to a rejection then we must have

581 > 5× 104 + z1−α
√

5× 104⇔ 581− 520√
520

> z1−α ⇔ Φ(2.6750) > Φ(z1−α) = 1− α.

We conclude that all α > 1 − Φ(2.6750) leads to rejection, so the p-value must be
1−Φ(2.6750) . (This is ≈ 0.0037 but you could not get this with a simple calculator.)
Since the p-value is smaller than 0.05 we would reject the null at significance level
0.05: indeed 1 − Φ(2.6750) < 0.05 because this is exactly the same as Φ−1(1 − 0.05) =
z0.95 = 1.64 < 2.6750 .

Prob.III: The literature suggests that there might be a relation between (the logarithm of the) heart-rate and
longevity in mammals. In Table 1 you can see some data for 14 different mammals. In the pairs
(xi, yi), i = 1, . . . , 14: the xi represents the (logarithm of the) average heart-rate in (log-)BMP, and
yi represents the respective average longevity in years. We plot the data in Figure 1 where we also
label each point with the name of the respective mammal.

Figure 1 seems to suggest that the relation between log-heart-rate and longevity might be linear.
The actual data follows in Table 1.

Variables Values

(x1, . . . , xn) 5.9402 5.9915 5.3471 4.4998 4.7875 4.8675 4.9416 4.1744 4.3307 3.6376
3.5553 4.0775 3.4012 2.0794

(y1, . . . , yn) 1.7 3 3 27 11 16 13.5 25 22.5 27.5 30 15 56 50

Table 1: The longevity and log-heart-rate in mammals dataset.

From the observations in Table 1 we see that nx̄ = 61.6315, nȳ = 301.2000, SSxx = 14.3109,
SSyy = 3477.5370, and SSxy = −198.9952. There are n = 14 measurements in total.

(a) Suppose that you would like to use a Simple Linear Regression model to derive a formula that6 pts
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Figure 1: Average longevity- and heart-rate for 14 different mammals.

allows you to model the relation between log-heart-rate (x) and the corresponding longevity
(Y ). In a linear regression model you assume that

Yi = α+ β xi + σεi, i = 1, . . . , n,

where α, β, σ ∈ R are unknown, and the εi are random error terms. In order for Simple Linear
Regression to be an adequate model here, what should you assume about: i) the relation between
(xi, Yi) and (xj , Yj), i 6= j; ii) the expectation of the noise terms εi; iii) the variance of the noise
terms εi?

Solution: i) These should be independent; ii) the noise should have expectation
0; iii) the variance of the εi should be 1.

(b) Consider the data from Table 1 and suppose that the assumptions from (a) hold. Based on10 pts
the data, what are your estimates of the intercept and the slope of the line in your model? (If
you do not manage to compute the estimates, assume in the subsequent questions that your
prediction formula is ŷ = 80− 10x.)

Solution: We have that β̂ = Sxy/SSxx = −198.9952/14.3109 = −13.9052 and α̂ =

ȳ − x̄× SSxY /SSxx = ȳ − x̄× β̂ = 301.2000/14− 61.6315/14× (−13.9052) = 82.7282 .

(c) Estimate the variance of the noise σ2 under the SLR modelling assumption.6 pts

Solution: The estimator for the variance of the noise is σ̂2 = SSyy/n − β̂2SSxx/n =
3477.5370/14− (−13.9052)2 × 14.3109/14 = 50.7471 .

(d) Say that you would like to make a prediction for the average life expectancy of a human that6 pts
has an average heart-rate of 65; what would this prediction be? Does it seem like this model is
picking up on an actual relation between (log-)heart-rate and life expectancy?

Solution: Using our prediction formula ŷ = α̂ + β̂ × x = 82.7282 − 13.9052 × x and
plugging in x = log(65) = 4.1744 we get the prediction ŷ = 24.6871 . (Using the
prediction formula Ŷ = 80 − 10 × x you would get Ŷ = 38.2561.) We know that
average life expectancy for humans is much more than about 25 years (or 38 years,
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for that matter) so it seems like either humans do not follow this model, or there
is only correlation between x and y but no (causal) relation.
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