
X 400004 - Statistics

Extra Resit

9 July 2021

Instructions:

• The exam is to be solved individually.

• Please write clearly and in an organised way: we can’t grade illegible answers.

• Please change pages when starting a new question.

• This is an exam on a mathematical subject, so support your answers with computations,
rather than words, whenever possible.

• You should report all relevant computations and justify non-trivial steps.

• This is a closed book exam; you are only allowed to have one A4 sheet with handwritten
notes with you.

• You may use a calculator.

• There are 8 pages in the exam questionnaire (including this one) and you have two hours and
45 minutes (165 minutes) to complete the exam.

• Students entitled to extra time have an extra 30 minutes.

• The exam consists of 15 questions spread throughout 4 problems.

• The number of points per question is indicated next to it for a total of 100 points.

• Your final grade is max(1, score/10), where “score” is the number you points you get.

• The problems are not necessarily ordered in term of difficulty. I recommend that you quickly
read through all problems first, then do the problems in whatever order suits you best.

• Remember to identify at least the first page of your answer sheets with you name, course
name, and student number.

After completing your exam, digitalise your answer sheets (with the correct order and orientation)
and submit them as a single PDF on Canvas for grading. You have 15 minutes following the
end of the exam to do this after which any submission will be marked as late. These instructions
do not replace the VU’s Protocol of online examination for 2020-2021 that you can find on Canvas.
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Prob.I: Suppose that X is a Poisson random variable with unknown rate λ > 0. The following are 10
independent observations that were taken from such a distribution: {3, 0, 2, 1, 3, 2, 1, 0, 2, 1}.

(a) Find the method of moments estimator of λ. What is the method of moments estimate?3 pts

(b) What is the maximum likelihood estimator of λ? What is the maximum likelihood estimate?6 pts

(c) If the prior distribution on λ is Gamma(1, 2), what is the posterior distribution? What is the6 pts
estimate that you obtain from the posterior expectation?

(d) Consider the estimators λ̃ = (a+
∑n

i=1Xi)/(n+ b) for a, b ≥ 0. Find the bias and the variance8 pts
of λ̃ and in particular of the three estimators that you found. (So the MME, MLE, and BE.)
What can you conclude?

Hint: If X ∼ Poisson(λ), then p(x) = e−λλx/x!, so that EX = λ and VX = λ, and if Y ∼
Gamma(α, β), then f(y) = βαyα−1e−βy/Γ(α), so that EY = α/β and VY = α/β2.
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Prob.II: Suppose that you are managing a website. Let X1, . . . , Xn be a random sample from the Poisson
distribution with unknown parameter λ > 0. Each observation Xi corresponds to the number of
visitors to your website in a given day. You are interested in the value of λ, the expected number of
visitors per day.

(a) Describe a near-pivot T for λ. Justify how you arrived at T , and don’t forget to mention the6 pts
(approximate) distribution of the pivot.

(b) Use the near-pivot from the previous question to derive an approximate confidence interval of9 pts
level 0.95 for λ. Don’t just present the final result: show how you go from (near-)pivot to
confidence interval.

(c) Suppose that you collect data for n = 10 days and obtain the confidence interval [27, 42] for4 pts
λ. Considering how the interval was derived, is it correct to say that this confidence interval
contains λ with probability 0.95? Justify your answer.

(d) Suppose that you are not happy with the large amount of uncertainty in the confidence interval8 pts
that you got – you find the confidence interval too wide. We saw in class that the length of a
confidence interval usually decreases as you increase the sample size. During how many days
would you have to collect data to be sure that the length of the confidence interval does not
exceed 10 people? Do you envision any problems with implementing this in practice?
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Prob.III: Atlanta International Airport (ATL) has been voted many times as the world’s most efficient air-
port. When looking over some historical data about waiting times for luggage at this airport, you
come across the following statistical problem. Suppose that the amount of time (in minutes) that a
passenger has to wait for their bag is well modelled by an exponential distribution with parameter λ
(and therefore expectation 1/λ).

Suppose that you have observations from n passengers, denoted by X1, . . . , Xn, that can be assumed
to be an i.i.d. sample from an exponential distribution with parameter λ. We would like to conduct
the following hypothesis test

H0 : λ = 0.25 against H1 : λ < 0.25.

In other words, is the average time a passenger has to wait for their luggage 1/0.25 = 4 minutes, or
is it longer than that? A possible test statistic to consider is Y =

∑n
i=1Xi. From your knowledge of

probability, you know that Y has an Erlang distribution with parameters n and λ.

Consider a test procedure that rejects the null hypothesis if Y ≥ cα, where cα > 0 is a critical value
that must be chosen depending on the desired significance level. For the rest of the question
consider the case n = 3.

(a) Say that you take cα = 32. What is the type I error of this test?9 pts

(b) At a less efficient airport we expect the passenger to have to wait on average 16 minutes, meaning9 pts
λ = 1/16. What is the power of the test in the previous question (where cα = 32) in this case?

(c) An experiment was conducted and a total waiting time (for the n = 3 passengers) of y = 289 pts
minutes was recorded. Compute the p-value of this test. Would you reject the hull hypothesis
at significance level α = 0.05? Carefully justify your answer.

Hint: An Erlang random variable Y with parameters n and λ has density

fY (y) =

{
e−λy λ

nyn−1

(n−1)! if y ≥ 0

0 otherwise
,

and cumulative distribution function

FY (y) = P (Y ≤ y) =

{
1− e−λy

∑n−1
k=0

(λy)k

k! if y ≥ 0
0 otherwise

.
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Prob.IV: Consider the following situation. Someone enjoys preparing home made pizzas but the downside of
making the pizzas by hand is that they don’t always come out the same size and so it is difficult to
know how long they should cook for.

Someone went through the trouble of watching several pizzas like a hawk while they cook until they
looked just right. The table below contains the data that was collected. Each row corresponds to a
different pizza, and for each pizza the weight (which seems the most relevant quantity to determine
the ideal cooking time) and the ideal cooking time were recorded.

Weight (g) Cooking time (minutes)

57 19.0
88 19.5
89 23.5
73 17.5
91 21.0
100 20.0
70 21.5
109 22.0
101 25.0
91 20.5
79 22.0
96 23.5
82 22.5
101 23.5

A simple linear regression analysis is to be conducted where the cooking time is taken as the response
variable and the weight of the pizza as the predictor. The model can be useful to predict ahead of
time what the ideal cooking time for the pizza is, based on its weight. Have a look at Appendix A
before you start solving this problem.

(a) Write the assumed model equation for the relation between the pizza weight and the cooking3 pts
time using α to denote the intercept and β the slope. Suppose that you fit the model and get
the plot in Figure 2 for the resulting residuals. Is it reasonable to assume normally distributed
errors?

(b) Estimate the model parameters α and β from the data, as well as σ2, the variance of the noise.8 pts

(c) Suppose that you prepared a pizza and it weighs 93g. Give an estimate for the ideal cooking3 pts
time (according to your model) for that pizza.

(d) You are a bit cautious since there could be other factors at play so that the estimate from (c)9 pts
might be off and you don’t want to under- or over-cook your pizza. Use your knowledge of
regression models to give a two sided prediction interval for the ideal cooking time in the
scenario in (c) (use α = 0.05).
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A Pizza Data

From the dataset we get x̄ = 87.64286, ȳ = 21.5,
∑n

i=1 x
2
i = 110169,

∑n
i=1 y

2
i = 6527,

∑n
i=1 xiyi = 26585.

Below follows a normal QQ-plot of the residuals of the model.
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Figure 1: Normal QQ plot of the residuals of the regression model.
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B Quantiles and cumulative probability tables

Below you can find a table of probabilities for the t-distribution and for the standard normal distribution,
respectively. Please read the caption of the tables carefully.

↓ ν/α→ 0.3 0.2 0.15 0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001
1 0.727 1.376 1.963 3.078 6.314 12.71 15.90 31.82 63.66 127.3 318.3
2 0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.10 22.33
3 0.584 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.215
4 0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173
5 0.559 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893
6 0.553 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208
7 0.549 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785
8 0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501
9 0.543 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297

10 0.542 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144
11 0.540 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025
12 0.539 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930
13 0.538 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852
14 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787
15 0.536 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733
16 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686
17 0.534 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646
18 0.534 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610
19 0.533 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579
20 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552
21 0.532 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527
22 0.532 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505
23 0.532 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485
24 0.531 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467
25 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450
26 0.531 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435
27 0.531 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421
28 0.530 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408
29 0.530 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396
∞ 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090

Figure 2: Right quantiles of the student t-distribution with ν degrees of freedom. Example: if X is a student t
distributed random variable, with ν = 4 degrees of freedom then P (X ≥ 2.776) = 0.025. The entries of the table
are therefore tν,1−α.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Figure 3: Cumulative probabilities of the standard normal distribution. The rows correspond to the number rounded
down to the closest decimal, and columns represent the second decimal. Example: if Z is a standard normal random
variable then P (Z ≤ 1.35) = 0.9115. You look this number up in the row corresponding to 1.3, and in the 6th
column (corresponding to 0.05.) Note that for z < 0 we have P (Z ≤ z) = 1 − P (Z ≤ −z). So for example
P (Z ≤ −1.35) = 1− 0.9115 = 0.0885.
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