
X 400004 - Statistics

Solutions to the Extra Resit

9 July 2021

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only but should inform the
level of detail that is expected from your answers in the exam. Also keep in mind that there
might be different ways to approach each question. If you find typos and or omissions, please
report them to the lecturer so they can be corrected.

Prob.I: Suppose that X is a Poisson random variable with unknown rate λ > 0. The following are 10
independent observations that were taken from such a distribution: {3, 0, 2, 1, 3, 2, 1, 0, 2, 1}.

(a) Find the method of moments estimator of λ. What is the method of moments estimate?3 pts

Solution: We have that EX = λ. To get the MME we solve λ = X̄, which immediately
gives us the estimator λ̂ = X̄. From the data X̄ = 15/10, which plugging into the
estimator leads to the estimate 1.5 for λ.

(b) What is the maximum likelihood estimator of λ? What is the maximum likelihood estimate?6 pts

Solution: Let n represent the number of observations. The likelihood function is

L(λ) =
n∏
i=1

1

Xi!
e−λλXi = e−nλλ

∑n
i=1Xi

n∏
i=1

1

Xi!
.

To maximise this function we can take the logarithm and then derivative with
respect to λ to get

d logL(λ)

dλ
=

d

dλ

(
−nλ+

n∑
i=1

Xi log λ−
n∑
i=1

log(Xi!)

)
= −n+

1

λ

n∑
i=1

Xi.

Solving for 0 gives

1

λ

n∑
i=1

Xi = n⇔
n∑
i=1

Xi = nλ⇔ λ̂ = X̄ =
1

n

n∑
i=1

Xi.

So the maximum likelihood estimate is also 1.5.

(c) If the prior distribution on λ is Gamma(1, 2), what is the posterior distribution? What is the6 pts
estimate that you obtain from the posterior expectation?

Solution: From the previous question we know that the likelihood satisfies

L(θ) ∝ e−nλλ
∑n

i=1Xi .
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Multiplying this with the prior π(λ) ∝ λ1−1e−2λ = e−2λ we get that the posterior is
proportional to

e−nλλ
∑n

i=1Xie−2λ = λ1+
∑n

i=1Xi−1e−(n+2)λ.

We recognise this as the density of a Gamma(1 +
∑n

i=1Xi, n+ 2) distribution. From
here we see that the posterior expectation is (1 +

∑n
i=1Xi)/(n + 2) leading to the

estimate 16/12 ≈ 1.33 .

(d) Consider the estimators λ̃ = (a+
∑n

i=1Xi)/(n+ b) for a, b ≥ 0. Find the bias and the variance8 pts
of λ̃ and in particular of the three estimators that you found. (So the MME, MLE, and BE.)
What can you conclude?

Solution: All of the estimators are of the form λ̃ for different a, b. We have

Eλ̃ = E
a+

∑n
i=1Xi

n+ b
=
a+ E

∑n
i=1Xi

n+ b
=
a+

∑n
i=1 EXi

n+ b
=
nλ+ a

n+ b
,

where we use the fact that the expectation is linear, and the distribution of the Xi

is Poisson(λ). The bias is therefore

nλ+ a

n+ b
− λ =

a− bλ
n+ b

.

Next we compute the variance,

Vλ̃ = V
a+

∑n
i=1Xi

n+ b
=

V(a+
∑n

i=1Xi)

(n+ b)2
=

∑n
i=1VXi

(n+ b)2
=

nλ

(n+ b)2
.

From this, the MME and MLE (a = b = 0) have bias and variance respectively

0, and
λ

n
=

λ

10
,

and the BE (a = 1, b = 2) has bias and variance respectively

1− 2λ

n+ 2
=

1− 2λ

12
, and

nλ

(n+ 2)2
=

λ

14.4
.

So the BE has (in general) higher bias than the MME, MLE, but it always has
smaller variance.

Hint: If X ∼ Poisson(λ), then p(x) = e−λλx/x!, so that EX = λ and VX = λ, and if Y ∼
Gamma(α, β), then f(y) = βαyα−1e−βx/Γ(α), so that EY = α/β and VY = α/β2.
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Prob.II: Suppose that you are managing a website. Let X1, . . . , Xn be a random sample from the Poisson
distribution with unknown parameter λ > 0. Each observation Xi corresponds to the number of
visitors to your website in a given day. You are interested in the value of λ, the expected number of
visitors per day.

(a) Describe a near-pivot T for λ. Justify how you arrived at T , and don’t forget to mention the6 pts
(approximate) distribution of the pivot.

Solution: Since we have a random sample from a Poisson distribution, the Central
Limit Theorem tells us that if n is large enough, then∑n

i=1Xi − E
∑n

i=1Xi√
V
∑n

i=1Xi

=
X̄ − λ√
λ/n

=
nX̄ − nλ√

nλ
=
√
n
X̄ − λ√

λ
≈ N(0, 1).

The above is already a near-pivot but the pivot can be simplified by noting that
the (weak/strong) law of large numbers implies that X̄ converges in probability to
EX = λ so that we are also allowed to claim that

T =
nX̄ − nλ√

nX̄
≈ N(0, 1).

(b) Use the near-pivot from the previous question to derive an approximate confidence interval of9 pts
level 0.95 for λ. Don’t just present the final result: show how you go from (near-)pivot to
confidence interval.

Solution: Since T is a near-pivot and is approximately standard normal distributed,
we know that since z0.025 = −z0.975

0.95 ≈ P
(
−z0.975 ≤

nX̄ − nλ√
nX̄

≤ z0.975
)

= · · · = P

(
X̄ −

√
nX̄

n
z0.975 ≤ λ ≤ X̄ +

√
nX̄

n
z0.975

)
,

which leads to a confidence interval for p of level 0.95:[
X̄ −

√
nX̄

n
z0.975, X̄ +

√
nX̄

n
z0.975

]
.

(c) Suppose that you collect data for n = 10 days and obtain the confidence interval [27, 42] for4 pts
λ. Considering how the interval was derived, is it correct to say that this confidence interval
contains λ with probability 0.95? Justify your answer.

Solution: The statement is clearly incorrect. The interval [27, 42] is not random and
so either contains λ or not, but it is not random and so cannot contain λ with any
pre-specified probability.

(d) Suppose that you are not happy with the large amount of uncertainty in the confidence interval8 pts
that you got – you find the confidence interval too wide. We saw in class that the length of a
confidence interval usually decreases as you increase the sample size. During how many days
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would you have to collect data to be sure that the length of the confidence interval does not
exceed 10 people? Do you envision any problems with implementing this in practice?

Solution: The length of the CI is

X̄ +

√
nX̄

n
z0.975 −

(
X̄ −

√
nX̄

n
z0.975

)
= 2

√
nX̄

n
z0.975.

For this to be smaller than 10 we need

2

√
nX̄

n
z0.975 ≤ 10⇔

√
X̄

n
≤ 5

z0.975
⇔ X̄

n
≤ 25

z20.975
⇔ z20.975

X̄

25
≤ n.

The problem here is that X̄ also depends on the sample size so we cannot determine
n ahead of time.

4



Prob.III: Atlanta International Airport (ATL) has been voted many times as the world’s most efficient air-
port. When looking over some historical data about waiting times for luggage at this airport, you
come across the following statistical problem. Suppose that the amount of time (in minutes) that a
passenger has to wait for their bag is well modelled by an exponential distribution with parameter λ
(and therefore expectation 1/λ).

Suppose that you have observations from n passengers, denoted by X1, . . . , Xn, that can be assumed
to be an i.i.d. sample from an exponential distribution with parameter λ. We would like to conduct
the following hypothesis test

H0 : λ = 0.25 against H1 : λ < 0.25.

In other words, is the average time a passenger has to wait for their luggage 1/0.25 = 4 minutes, or
is it longer than that? A possible test statistic to consider is Y =

∑n
i=1Xi. From your knowledge of

probability, you know that Y has an Erlang distribution with parameters n and λ.

Consider a test procedure that rejects the null hypothesis if Y ≥ cα, where cα > 0 is a critical value
that must be chosen depending on the desired significance level. For the rest of the question
consider the case n = 3.

(a) Say that you take cα = 32. What is the type I error of this test?9 pts

Solution: The type I error corresponds to rejecting the null hypothesis when the
null hypothesis is actually true. Therefore, the type I error is given by

PH0(reject H0) = Pλ=0.25 (Y ≥ cα) = Pλ=0.25 (Y ≥ 32)

= 1− Pλ=0.25 (Y < 32) = 1−

(
1− e−32λ

n−1∑
k=0

(32λ)k

k!

)

= e−32λ

(
1 + 32λ+

(32λ)2

2

)
= e−8

(
1 + 8 + 82/2

)
≈ 0.01375,

where we use the fact that n = 3 and set λ = 0.25 = 1/4.

(b) At a less efficient airport we expect the passenger to have to wait on average 16 minutes, meaning9 pts
λ = 1/16. What is the power of the test in the previous question (where cα = 32) in this case?

Solution: The power of a test is the probability of rejecting the null hypothesis
when it should indeed be rejected. In this case λ = 1/16 so the power of this test is
given by

PH1(reject H0) = Pλ=1/16 (Y ≥ cα) = Pλ=1/16 (Y ≥ 32) = 1− Pλ=1/16 (Y < 32)

= 1−

(
1− e−32λ

n−1∑
k=0

(32λ)k

k!

)
= e−32λ

(
1 + 32λ+

(32λ)2

2

)
= e−2

(
1 + 2 + 22/2

)
≈ 0.6767.

(c) An experiment was conducted and a total waiting time (for the n = 3 passengers) of y = 289 pts
minutes was recorded. Compute the p-value of this test. Would you reject the hull hypothesis
at significance level α = 0.05? Carefully justify your answer.
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Solution: The p-value of a test is the smallest significance level for which the null
hypothesis is rejected. So this corresponds to the largest value of cα for which the
test will reject H0. Clearly, we must take cα = 28 since is cα > 28 we don’t reject.
The type I error of this test (i.e., the p-value) is then

p-value = Pλ=0.25 (Y ≥ 28) = Pλ=0.25 (Y ≥ 28) = 1− Pλ=0.25 (Y < 28)

= 1−

(
1− e−28λ

n−1∑
k=0

(28λ)k

k!

)
= e−28λ

(
1 + 28λ+

(28λ)2

2

)
= e−7

(
1 + 7 + 72/2

)
≈ 0.02964.

Since the p-value is smaller than 0.05 we would reject the null hypothesis at signif-
icantly level α = 0.05.

Hint: An Erlang random variable Y with parameters n and λ has density

fY (y) =

{
e−λy λ

nyn−1

(n−1)! if y ≥ 0

0 otherwise
,

and cumulative distribution function

FY (y) = P (Y ≤ y) =

{
1− e−λy

∑n−1
k=0

(λy)k

k! if y ≥ 0
0 otherwise

.
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Prob.IV: Consider the following situation. Someone enjoys preparing home made pizzas but the downside of
making the pizzas by hand is that they don’t always come out the same size and so it is difficult to
know how long they should cook for.

Someone went through the trouble of watching several pizzas like a hawk while they cook until they
looked just right. The table below contains the data that was collected. Each row corresponds to a
different pizza, and for each pizza the weight (which seems the most relevant quantity to determine
the ideal cooking time) and the ideal cooking time were recorded.

Weight (g) Cooking time (minutes)

57 19.0
88 19.5
89 23.5
73 17.5
91 21.0
100 20.0
70 21.5
109 22.0
101 25.0
91 20.5
79 22.0
96 23.5
82 22.5
101 23.5

A simple linear regression analysis is to be conducted where the cooking time is taken as the response
variable and the weight of the pizza as the predictor. The model can be useful to predict ahead of
time what the ideal cooking time for the pizza is, based on its weight. Have a look at Appendix A
before you start solving this problem.

(a) Write the assumed model equation for the relation between the pizza weight and the cooking3 pts
time using α to denote the intercept and β the slope. Suppose that you fit the model and get
the plot in Figure 2 for the resulting residuals. Is it reasonable to assume normally distributed
errors?

Solution: Let yi denote the cooking time on the i-th day, and xi denote the pizza
weight. In the regression model we assume that

yi = α+ βxi + εi,

where α, β ∈ R are unknown parameters and εi are zero mean independent random
errors. From Figure 2 we see that most points lie relatively close to a straight
line in the normal QQ plot of the residuals. Therefore the normality assumption is
somewhat reasonable.

(b) Estimate the model parameters α and β from the data, as well as σ2, the variance of the noise.8 pts
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Solution: We have that

Sxx =

n∑
i=1

x2i − n(x̄)2 = 2631.214,

Syy =

n∑
i=1

y2i − n(ȳ)2 = 55.5,

Sxy =
n∑
i=1

xiyi − nȳx̄ = 204.5,

β̂ = Sxy/Sxx = 0.07772077,

α̂ = ȳ − β̂x̄ = 14.68833,

σ̂2 = Syy/n− β̂2Sxx/n = 2.829007.

(c) Suppose that you prepared a pizza and it weighs 93g. Give an estimate for the ideal cooking3 pts
time (according to your model) for that pizza.

Solution: Let x0 = 93. A point estimate for the cooking time is

µ̂ = α̂+ 93× β̂ = 14.68833 + 93× 0.07772 = 21.92 minutes.

(d) You are a bit cautious since there could be other factors at play so that the estimate from (c)9 pts
might be off and you don’t want to under- or over-cook your pizza. Use your knowledge of
regression models to give a two sided prediction interval for the ideal cooking time in the
scenario in (c) (use α = 0.05).

Solution: We need to compute a two-sided prediction interval for the cooking time.
The end-points of this prediction interval are

µ̂± t1−α/2;14−2

√
σ̂2
(

1 +
1

n
+

(x0 − x̄)2

Sxx

)
.

Note that t0.975;12 = 2.179 (looked up in the 0.025 column of the table of t-
probabilites.) Plugging in everything, we conclude the prediction interval is
[18.10346, 25.72926] minutes.
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A Pizza Data

From the dataset we get x̄ = 87.64286, ȳ = 21.5,
∑n

i=1 x
2
i = 110169,

∑n
i=1 y

2
i = 6527,

∑n
i=1 xiyi = 26585.

Below follows a normal QQ-plot of the residuals of the model.
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Figure 1: Normal QQ plot of the residuals of the regression model.
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B Quantiles and cumulative probability tables

Below you can find a table of probabilities for the t-distribution and for the standard normal distribution,
respectively. Please read the caption of the tables carefully.

↓ ν/α→ 0.3 0.2 0.15 0.1 0.05 0.025 0.02 0.01 0.005 0.0025 0.001
1 0.727 1.376 1.963 3.078 6.314 12.71 15.90 31.82 63.66 127.3 318.3
2 0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.10 22.33
3 0.584 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5.841 7.453 10.215
4 0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598 7.173
5 0.559 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773 5.893
6 0.553 0.906 1.134 1.440 1.943 2.447 2.612 3.143 3.707 4.317 5.208
7 0.549 0.896 1.119 1.415 1.895 2.365 2.517 2.998 3.499 4.029 4.785
8 0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833 4.501
9 0.543 0.883 1.100 1.383 1.833 2.262 2.398 2.821 3.250 3.690 4.297

10 0.542 0.879 1.093 1.372 1.812 2.228 2.359 2.764 3.169 3.581 4.144
11 0.540 0.876 1.088 1.363 1.796 2.201 2.328 2.718 3.106 3.497 4.025
12 0.539 0.873 1.083 1.356 1.782 2.179 2.303 2.681 3.055 3.428 3.930
13 0.538 0.870 1.079 1.350 1.771 2.160 2.282 2.650 3.012 3.372 3.852
14 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326 3.787
15 0.536 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2.947 3.286 3.733
16 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252 3.686
17 0.534 0.863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222 3.646
18 0.534 0.862 1.067 1.330 1.734 2.101 2.214 2.552 2.878 3.197 3.610
19 0.533 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174 3.579
20 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2.528 2.845 3.153 3.552
21 0.532 0.859 1.063 1.323 1.721 2.080 2.189 2.518 2.831 3.135 3.527
22 0.532 0.858 1.061 1.321 1.717 2.074 2.183 2.508 2.819 3.119 3.505
23 0.532 0.858 1.060 1.319 1.714 2.069 2.177 2.500 2.807 3.104 3.485
24 0.531 0.857 1.059 1.318 1.711 2.064 2.172 2.492 2.797 3.091 3.467
25 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2.485 2.787 3.078 3.450
26 0.531 0.856 1.058 1.315 1.706 2.056 2.162 2.479 2.779 3.067 3.435
27 0.531 0.855 1.057 1.314 1.703 2.052 2.158 2.473 2.771 3.057 3.421
28 0.530 0.855 1.056 1.313 1.701 2.048 2.154 2.467 2.763 3.047 3.408
29 0.530 0.854 1.055 1.311 1.699 2.045 2.150 2.462 2.756 3.038 3.396
∞ 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2.326 2.576 2.807 3.090

Figure 2: Right quantiles of the student t-distribution with ν degrees of freedom. Example: if X is a student t
distributed random variable, with ν = 4 degrees of freedom then P (X ≥ 2.776) = 0.025. The entries of the table
are therefore tν,1−α.
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z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990
3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Figure 3: Cumulative probabilities of the standard normal distribution. The rows correspond to the number rounded
down to the closest decimal, and columns represent the second decimal. Example: if Z is a standard normal random
variable then P (Z ≤ 1.35) = 0.9115. You look this number up in the row corresponding to 1.3, and in the 6th
column (corresponding to 0.05.) Note that for z < 0 we have P (Z ≤ z) = 1 − P (Z ≤ −z). So for example
P (Z ≤ −1.35) = 1− 0.9115 = 0.0885.
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