X 400004 - Statistics
Solutions to the Course Resit

9 February 2021

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only but should inform the
level of detail that is expected from your answers in the exam. Also keep in mind that there
might be different ways to approach each question. If you find typos and or omissions, please
report them to the lecturer so they can be corrected.

Prob.I: Suppose that X is a discrete random variable that with the following distribution
2 1 2 1
IP’(XzO):§0, P(le):§c9, IP)(X:2):§(1—9), IP(X:3):§(1—9),

where 0 < 6 < 1 is an unknown parameter. The following 10 independent observations were taken
from such a distribution: {3,0,2,1,3,2,1,0,2,1}.
6 pts (a) Find the method of moments estimator of . What is the method of moments estimate?
Solution: We have that
2 1 2 1 0 4 40 7— 60
EX=0x-0+1x-04+2x-(1-0)+3x-(1-0)==-+-—-—+1—-0=——.
><3+><3+><3( ) + ><3( ) stz -3+ 3

To get the MME we solve (7—66)/3 = X, which gives us the estimator § = (7—3X)/6.
From the data X = 15/10, which plugging into the estimator leads to the estimate
5/12.

6 pts (b) What is the maximum likelihood estimate of 67
Solution: The likelihood of one observation is

2 1 2 1
0 = S0lix=op + 30x=1} + 3(1 = O)lpxmgy + 5 (1 = O)1{x=p},

which, combined with the fact that we observed {3,0,2,...,1} leads to the likelihood,
1 2, 2 1 2\* (1\* /2 Al 2
LO)==(1—0)x 20xZ(1—=0)x---x=0= (= - 11— S(1—
(0) 3( 0) x 30 X 3( 0) x X 39 <39> X (30) X (3( 9)) X <3( 9)>

- <§9(1 - 9))5.

From here it is already clear that this function is maximised by 6=1 /2 , but this
also follows from noting that the log-likelihood is

2
((0) = 5log 5 + 5log f + 5log(1 — 0);



6 pts

3 pts

()

(d)

taking derivatives and setting to zero we get

aed) 5 5 B _
W_é_m_m:m—e_e@e_m,

which is our maximum likelihood estimate.

If the prior distribution on @ is U0, 1], what is the posterior density?
Solution: From the previous question we know that the likelihood is

L(0) = <§9(1 - 9))5.

multiplying this with the prior 7(0) = lio<o<1}y we get that the posterior is propor-
tional to

7T(9 | 3, 0, 2, ey 1) X 95(1 — 9)51{0§9<1}.
We recognise this as the density of a Beta(6,6) distribution.

Sketch the posterior. What is the mode of the posterior?

Solution: The mode of the posterior (the MAP estimator) is just 1/2 and coincides
with the maximum likelihood estimator since we used a uniform prior. A sketch of
the posterior density is depicted in Figure 1.
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Figure 1: Sketch of the posterior density.



Prob.II: Suppose that you are managing an email mailing list for a website. Let Xi,...,X,, be a random
sample from the Bernoulli distribution with unknown parameter p € [0,1]. Each observation X;
corresponds to a different person that got the mailing list email. Suppose that X; = 1 if the person
opened the email, and X; = 0, otherwise. You are interested in the value of p, the probability that
someone who gets the mailing list actually opens it. (The other parameter in the model, n, is not
specified but you always know what it is.)

6 pts

9 pts

6 pts

(a)

(b)

()

Describe a near-pivot T' for p. Justify how you arrived at T', and don’t forget to mention the
(approximate) distribution of the pivot.
Solution: Let p = X be the maximum likelihood estimator for p. The central limit
tells us that if n is large enough, then
X—ELX: X —p _ nX —np ~ N(0,1).
VVX (I =p)/n /np(1—p)

The above is already a near-pivot but the pivot can be simplified by noting that
the (weak/strong) law of large numbers implies that p converges in probability to
p so that we are also allowed to claim that

nX —np
np(l —p)

T = ~ N(0,1).

Use the near-pivot from the previous question to derive a confidence interval of level 0.95 for p.
Don’t just present the final result: show how you go from (near-)pivot to confidence interval.

Solution: Since T is a near-pivot and is approximately standard normal distributed,
we know that since 2925 = —20.975

X
0.95 % P [ —20075 <~ < 2grs | = - =
np(1l — p)

- np(l—p - np(l —p
=P (X - ¥ZO.975 <p< X+ ()20.975> ;
n n
which leads to a confidence interval for p of level 0.95:

[X_ VT X+¢p<1—p>] ,

20.9755

Suppose now that the last issue of the mailing list was sent to n = 27 subscribers and that, out
of these, only 2 opened the email. Based on the confidence interval for p that you found, what
would be your most optimistic guess as to how large p is? (There are tables at the end of the
exam questionnaire in Appendix B that you may need to consult to answer this question.)

Solution: Using this information we see that n = 27, p = 2/27 ~ 0.074 , and from
Appendix B we see that zp975 ~ 1.96 (read this in the row labeled 1.9 and column



8 pts

(d)

labeled 0.06) . The upper bound of the confidence interval gives us our most
optimistic guess on how large p can be:

- (1 —p 2 27 x (2/27) x (1 —2/27
o EUB) 2 /27X (2/20) X (1= 2/2)
n 27 27

1.96 ~ 0.173,

which is not very high.

Suppose that you are not happy with the large amount of uncertainty in the confidence interval
that you got — you find the confidence interval too wide. In class, we saw that increasing the
sample size n typically reduces uncertainty. How many emails would you have to send to be
fairly confident that the estimate X of p is not off by more that 0.005? (You can still use X as
your best guess for p.)

Solution: So that |p — p| = |X — p| is no more than 0.005 we need to ensure that

vl =p) XX(:L_X)L% < 0.005.

Solving for n we conclude that (using X = 2/27 ~ 0.074)

1.962 x X

"= 0,005

~ 11382.5,

so we conclude that we would need at least (approximately) 11383 observations.



Prob.ITI: When studying the browsing behaviour in websites you come across the following statistical problem:

9 pts

9 pts

users accessing a webpage will take some amount of time until they click the button “continue”.
Somewhat simplistically, the amount of time (in seconds) a user takes to press the button is well
modeled by an exponential distribution with parameter A (and therefore expectation 1/\). Suppose
you have observations from n users, denoted by Xi,...,X,,, that can be assumed to be an i.i.d.
sample from an exponential distribution with parameter .

We would like to conduct the following hypothesis test
Hyp: A=0.25 against Hj;:A<0.25.

In other words, is the average time a user stays on the page 1/0.25 = 4 seconds, or is it larger? A
natural test statistic to consider is Y = >""" | X;. From your knowledge of probability you know that
Y has an Erlang distribution with parameters n and A.

Hint: An Erlang random variable Y with parameters n and A has density

{ XL gy >0

fr(y) =

0 otherwise

and cumulative distribution function

L— eyl Qt py >
FY(Z/)ZP(YS?J):{ o e BVED

Consider a test procedure that rejects the null hypothesis if Y > ¢,, where ¢, > 0 must be chosen
depending on the desired significance level. For the rest of the question consider the case
n=3.

(a) Say that you take ¢, = 32. What is the type I error of this test?

Solution: The type I error corresponds to rejecting the null hypothesis when the
null hypothesis is actually true. Therefore, the type I error is given by

PH()(reject Hg) = PA:0,25 (Y Z Ca) = PA:0,25 (Y 2 32)

n—1
_ 32))k
=1—- P2 (Y <32)=1- (1—6 322 E ( k:!) )
k=0

(32))2

_ e—32>\ <1 + 32\ + > = 6_8 (1 + 8+ 82/2) ~ 001375,

where we use the fact that n =3 and set A =0.25 = 1/4.
(b) For a poorly designed webpage we expect the users to spend on average 16 seconds, meaning
A =1/16. What is the power of the test in the previous question (where ¢, = 32) in this case?

Solution: The power of a test is the probability of rejecting the null hypothesis
when it should actually be rejected. In this case A = 1/16 so the power of this test



is given by

Py, (reject Ho) = Pyx—1/16 (Y > ca) = Prx=1/16 (Y > 32) =1 — Py_116 (Y < 32)

=1- ( *3”2 32)‘ ) o327 <1 43904 (322)\) )

=e?(1+2+ 22/2) ~ 0.6767.

9 pts (¢) An experiment was conducted and a total waiting time of y = 28 seconds was recorded. Compute
the p-value of this test. Would you reject the hull hypothesis at significance level o = 0.057
Carefully justify your answer.
Solution: The p-value of a test is the smallest significance level for which the null
hypothesis is rejected. So this corresponds to the largest value of ¢, for which the
test will reject Hy. Clearly, we must take c, = 28 since is ¢, > 28 we don’t reject.
The type I error of this test (i.e., the p-value) is then

p-value = Py_g25 (Y > 28) = Py—g25 (Y > 28) = 1 — Py_g.25 (Y < 28)

n—1 k
=1- (1 —e Y (2?) > — ¢~ 28) (1 + 28X\ + (28;) )
k=0 ’

=e " (1+7+7%/2) ~ 0.02964.

Since the p-value is smaller than 0.05 we would reject the null hypothesis at signif-
icantly level a = 0.05.



Prob.IV: Consider the following situation. You are spending some well deserved holidays on the beach, in

3 pts

8 pts

a country with consistently good weather. While relaxing on the sand you notice that the number
of swimmers in the water seems heavily influenced by the water temperature. This prompts the
question: can you use the number of swimmers as a “thermometer”?

Over the course of two weeks you count the number of swimmers entering the water between 10:30
and 11:00 in a pre-selected region of the beach. In addition, you take note of the water temperature
(as reported by a local meteorological site). Suppose that the data below is what you collected.

’ Day Number of swimmers Water temperature (°C) ‘

1 o7 19.0
2 88 19.5
3 89 23.5
4 73 17.5
) 91 21.0
6 100 20.0
7 70 21.5
8 109 22.0
9 101 25.0
10 91 20.5
11 79 22.0
12 96 23.5
13 82 22.5
14 101 23.5

A simple linear regression analysis is to be conducted where the water temperature is taken as the
response variable and the number of swimmers as the predictor. Have a look at Appendix A
before you start solving this problem.

(a) Write the assumed model equation for the relation between the number of swimmers and
the water temperature using « to denote the intercept and S the slope. Suppose that you fit
the model and get the plot in Figure 2 for the resulting residuals. Is it reasonable to assume
normally distributed errors?

Solution: Let y; denote the temperature of the water on the i-th day, and z; denote
the number of swimmers. In the regression model we assume that

yi = o+ fri + €,

where o, € R are unknown parameters and ¢; are zero mean independent random
errors. From Figure 2 we see that most points lie relatively close to a straight
line in the normal QQ plot of the residuals. Therefore the normality assumption is
somewhat reasonable.

(b) Estimate the model parameters o and 3 from the data, as well as o2, the variance of the noise.



Solution: We have that

n
Sex = Y @7 —n(Z)” = 2631.214,
=1

n
Syy = ny —n(y)* = 55.5,
i=1

n
Sey = szyl — nyx = 204.5,

=1
B = Suy/Ses = 0.07772077,
& =y — Bz = 14.68833,
6% = Syy/n — %S /n = 2.829007.

3 pts (c) Suppose that after a quick trip to the country side you returned to the same beach and decided
to see if your model was indeed useful in predicting the water temperature. Between 10:30 and
11:00 you counted 93 swimmers. Give an estimate for the water temperature (according to your
model).

Solution: Let zo = 93. A point estimate for the water temperature is

fi = &+ 93 x B = 14.68833 + 93 x 0.07772 = 21.92 degrees.

9 pts (d) Your friends were impressed by your model, but a bit doubtful about the quality of your estimate
in (c) and wanted to have a better idea of the errors that are involved. Use your knowledge
of regression models to give a two sided prediction interval for the water temperature in the
scenario in (c) (use a = 0.05).

Solution: We need to compute a two-sided prediction interval for the temperature.
The end-points of this prediction interval are

(0 ~ 1 To— T 2
fx tla/2;142\/02 (1 + =+ H)
n Sxx

Note that tpgrs512 = 2.179 (looked up in the 0.025 column of the table of t-
probabilites.) Plugging in everything, we conclude the prediction interval is
[18.10346, 25.72926].




A Beach Data

From the dataset we get # = 87.64286, j = 21.5, >, 7 = 110169, > I, y? = 6527, Y1 | x;y; = 26585.
Below follows a normal QQ-plot of the residuals of the model.

Normal Q-Q Plot

Sample Quantiles

Theoretical Quantiles

Figure 2: Normal QQ plot of the residuals of the regression model.



B Quantiles and cumulative probability tables

Below you can find a table of probabilities for the t-distribution and for the standard normal distribution,
respectively. Please read the caption of the tables carefully.

0.3 0.2 0.15 0.1 0.06 0.025 0.02 0.01 0.005 0.0025 0.001
0.727 1.376 1.963 3.078 6.314 1271 1590 31.82 63.66 1273  318.3
0.617 1.061 1.386 1.886 2.920 4.303 4.849 6.965 9.925 14.10 22.33
0.584 0.978 1.250 1.638 2.353 3.182 3.482 4.541 5841 7.453 10.215
0.569 0.941 1.190 1.533 2.132 2.776 2.999 3.747 4.604 5.598  7.173
0.559 0.920 1.156 1.476 2.015 2.571 2.757 3.365 4.032 4.773  5.893
0.553 0.906 1.134 1.440 1.943 2.447 2612 3.143 3.707 4.317  5.208
0.549 0.896 1.119 1415 1.895 2.365 2.517 2998 3.499 4.029 4.785
0.546 0.889 1.108 1.397 1.860 2.306 2.449 2.896 3.355 3.833  4.501

910543 0.883 1.100 1.383 1.833 2262 2398 2821 3.250 3.690 4.297
10 | 0.542 0.879 1.093 1.372 1.812 2.228 2359 2.764 3.169 3.581 4.144
11 | 0.540 0.876 1.088 1.363 1.796 2.201 2328 2.718 3.106 3.497 4.025
12 1 0.539 0873 1.083 1.356 1.782 2.179 2303 2.681 3.055 3.428  3.930
13 1 0.538 0870 1.079 1350 1.771 2.160 2.282 2.650 3.012 3.372  3.852
14 | 0.537 0.868 1.076 1.345 1.761 2.145 2.264 2.624 2.977 3.326  3.787
15 1 0.536 0.866 1.074 1.341 1.753 2.131 2.249 2.602 2947 3.286  3.733
16 | 0.535 0.865 1.071 1.337 1.746 2.120 2.235 2.583 2.921 3.252  3.686
17 1 0534 0863 1.069 1.333 1.740 2.110 2.224 2.567 2.898 3.222  3.646
18 1 0.534 0.862 1.067 1330 1.734 2101 2214 2552 2878 3.197 3.610
19 | 0.533 0.861 1.066 1.328 1.729 2.093 2.205 2.539 2.861 3.174  3.579
20 | 0.533 0.860 1.064 1.325 1.725 2.086 2.197 2528 2.845 3.153  3.552
21 1 0.532 0.859 1.063 1.323 1.721 2.080 2.189 2518 2831 3.135  3.527
22 1 0.532 0.858 1.061 1.321 1.717 2.074 2.183 2508 2.819 3.119  3.505
23 1 0.532 0.858 1.060 1.319 1.714 2.069 2.177 2500 2.807 3.104  3.485
24 1 0.531 0.857 1.059 1.318 1.711 2.064 2.172 2492 2797 3.091  3.467
251 0.531 0.856 1.058 1.316 1.708 2.060 2.167 2485 2.787 3.078  3.450
26 | 0.531 0.856 1.058 1.315 1.706 2.056 2.162 2479 2779 3.067 3.435
27 1 0.531 0.855 1.0567 1.314 1.703 2.052 2.158 2473 2771 3.057 3.421
28 1 0.530 0.855 1.056 1.313 1.701 2.048 2.154 2467 2.763 3.047  3.408
29 1 0.530 0.854 1.0556 1.311 1.699 2.045 2.150 2462 2.756 3.038  3.396
oo | 0.524 0.842 1.036 1.282 1.645 1.960 2.054 2326 2.576 2.807 3.090
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Figure 3: Right quantiles of the student t¢-distribution with v degrees of freedom. Example: if X is a student ¢
distributed random variable, with v = 4 degrees of freedom then P(X > 2.776) = 0.025. The entries of the table
are therefore ¢, 1_,.
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[z [ 000 | 001 [ 002 | 0.03 [ 0.04 0.05 0.06 [ 0.07 | 0.08 [ 0.09
0.0 [[ 0.5000 [ 0.5040 | 0.5080 [ 0.5120 [ 0.5160 [ 0.5199 [ 0.5239 [ 0.5279 [ 0.5319 [ 0.5359
0.1 || 0.5398 | 0.5438 | 0.5478 | 0.5517 | 0.5557 | 0.5596 | 0.5636 | 0.5675 | 0.5714 | 0.5753
0.2 || 0.5793 | 0.5832 | 0.5871 | 0.5910 | 0.5948 | 0.5987 | 0.6026 | 0.6064 | 0.6103 | 0.6141
0.3 || 0.6179 | 0.6217 | 0.6255 | 0.6293 | 0.6331 | 0.6368 | 0.6406 | 0.6443 | 0.6480 | 0.6517
0.4 | 0.6554 | 0.6591 | 0.6628 | 0.6664 | 0.6700 | 0.6736 | 0.6772 | 0.6808 | 0.6844 | 0.6879
0.5 || 0.6915 | 0.6950 | 0.6985 | 0.7019 | 0.7054 | 0.7088 | 0.7123 | 0.7157 | 0.7190 | 0.7224
0.6 || 0.7257 | 0.7291 | 0.7324 | 0.7357 | 0.7389 | 0.7422 | 0.7454 | 0.7486 | 0.7517 | 0.7549
0.7 || 0.7580 | 0.7611 | 0.7642 | 0.7673 | 0.7703 | 0.7734 | 0.7764 | 0.7794 | 0.7823 | 0.7852
0.8 || 0.7881 | 0.7910 | 0.7939 | 0.7967 | 0.7995 | 0.8023 | 0.8051 | 0.8078 | 0.8106 | 0.8133
0.9 || 0.8159 | 0.8186 | 0.8212 | 0.8238 | 0.8264 | 0.8289 | 0.8315 | 0.8340 | 0.8365 | 0.8389
1.0 [ 0.8413 | 0.8438 [ 0.8461 | 0.8485 | 0.8508 | 0.8531 | 0.8554 | 0.8577 | 0.8599 | 0.8621
1.1 || 0.8643 | 0.8665 | 0.8686 | 0.8708 | 0.8729 | 0.8749 | 0.8770 | 0.8790 | 0.8810 | 0.8830
1.2 || 0.8849 | 0.8869 | 0.8888 | 0.8907 | 0.8925 | 0.8944 | 0.8962 | 0.8980 | 0.8997 | 0.9015
1.3 || 0.9032 | 0.9049 | 0.9066 | 0.9082 | 0.9099 | 0.9115 | 0.9131 | 0.9147 | 0.9162 | 0.9177
1.4 | 0.9192 | 0.9207 | 0.9222 | 0.9236 | 0.9251 | 0.9265 | 0.9279 | 0.9292 | 0.9306 | 0.9319
1.5 || 0.9332 | 0.9345 | 0.9357 | 0.9370 | 0.9382 | 0.9394 | 0.9406 | 0.9418 | 0.9429 | 0.9441
1.6 || 0.9452 | 0.9463 | 0.9474 | 0.9484 | 0.9495 | 0.9505 | 0.9515 | 0.9525 | 0.9535 | 0.9545
1.7 | 0.9554 | 0.9564 | 0.9573 | 0.9582 | 0.9591 | 0.9599 | 0.9608 | 0.9616 | 0.9625 | 0.9633
1.8 || 0.9641 | 0.9649 | 0.9656 | 0.9664 | 0.9671 | 0.9678 | 0.9686 | 0.9693 | 0.9699 | 0.9706
1.9 || 0.9713 | 0.9719 | 0.9726 | 0.9732 | 0.9738 | 0.9744 | 0.9750 | 0.9756 | 0.9761 | 0.9767
2.0 [[ 0.9772 [ 0.9778 | 0.9783 | 0.9788 | 0.9793 [ 0.9798 [ 0.9803 | 0.9808 | 0.9812 | 0.9817
2.1 || 0.9821 | 0.9826 | 0.9830 | 0.9834 | 0.9838 | 0.9842 | 0.9846 | 0.9850 | 0.9854 | 0.9857
2.2 || 0.9861 | 0.9864 | 0.9868 | 0.9871 | 0.9875 | 0.9878 | 0.9881 | 0.9884 | 0.9887 | 0.9890
2.3 || 0.9893 | 0.9896 | 0.9898 | 0.9901 | 0.9904 | 0.9906 | 0.9909 | 0.9911 | 0.9913 | 0.9916
2.4 | 0.9918 | 0.9920 | 0.9922 | 0.9925 | 0.9927 | 0.9929 | 0.9931 | 0.9932 | 0.9934 | 0.9936
2.5 || 0.9938 | 0.9940 | 0.9941 | 0.9943 | 0.9945 | 0.9946 | 0.9948 | 0.9949 | 0.9951 | 0.9952
2.6 || 0.9953 | 0.9955 | 0.9956 | 0.9957 | 0.9959 | 0.9960 | 0.9961 | 0.9962 | 0.9963 | 0.9964
2.7 || 0.9965 | 0.9966 | 0.9967 | 0.9968 | 0.9969 | 0.9970 | 0.9971 | 0.9972 | 0.9973 | 0.9974
2.8 || 0.9974 | 0.9975 | 0.9976 | 0.9977 | 0.9977 | 0.9978 | 0.9979 | 0.9979 | 0.9980 | 0.9981
2.9 || 0.9981 | 0.9982 | 0.9982 | 0.9983 | 0.9984 | 0.9984 | 0.9985 | 0.9985 | 0.9986 | 0.9986
3.0 [[ 0.9987 | 0.9987 | 0.9987 | 0.9988 | 0.9988 | 0.9989 | 0.9989 | 0.9989 | 0.9990 | 0.9990
3.1 | 0.9990 | 0.9991 | 0.9991 | 0.9991 | 0.9992 | 0.9992 | 0.9992 | 0.9992 | 0.9993 | 0.9993
3.2 | 0.9993 | 0.9993 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9994 | 0.9995 | 0.9995 | 0.9995
3.3 || 0.9995 | 0.9995 | 0.9995 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9996 | 0.9997
3.4 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9997 | 0.9998
3.5 || 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998 | 0.9998
3.6 || 0.9998 | 0.9998 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.7 1] 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.8 || 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
3.9 || 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000

Figure 4: Cumulative probabilities of the standard normal distribution. The rows correspond to the number rounded
down to the closest decimal, and columns represent the second decimal. Example: if Z is a standard normal random
variable then P(Z < 1.35) = 0.9115. You look this number up in the row corresponding to 1.3, and in the 6th
column (corresponding to 0.05.) Note that for z < 0 we have P(Z < z) = 1 — P(Z < —z). So for example

P(Z < —1.35) =1 —0.9115 = 0.0885.
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