
X 400004 - Statistics

Solutions to the Final Exam

15 December 2020

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only but should inform the
level of detail that is expected from your answers in the exam. Also keep in mind that there
might be different ways to approach each question. If you find typos and or omissions, please
report them to the lecturer so they can be corrected.

Prob.I: Consider a random sample X1, . . . , Xn of size n from the Poisson(λ) distribution, where λ > 0 and
suppose that you put a Gamma(α, β) prior on λ. This question concerns the choice of the hyper-
parameters α and β.

A few facts that you may need to know in order to solve this questions are:

• If X ∼ Poisson(λ), then its probability mass function is f(x) = e−λλx/x!;

• If Y ∼ Gamma(α, β), α, β > 0, then its probability density function is f(y) = βα

Γ(α)y
α−1e−βy;

• If Y ∼ Gamma(α, β), then EY = α/β, and VY = α/β2;

(a) Compute the posterior distribution of λ corresponding to a Gamma prior. Solution: The8 pts
posterior distribution of λ is proportional to the likelihood times the prior. The
likelihood is

L(λ) = e−λλX1/X1!× · · · × e−λλXn/Xn! ∝ e−nλλnX̄ .

The prior density is π(λ) ∝ λα−1e−βλ. Combining the two we get that the posterior
density satisfies

π(λ | X1, . . . , Xn) ∝ L(λ)π(λ) ∝ e−nλλnX̄λα−1e−βλ = λnX̄+α−1e−(n+β)λ.

We identify this as being proportional to the density of a Gamma(nX̄ + α, n + β)
distribution. We conclude that the posterior is Gamma(nX̄ + α, n+ β).

(b) Compute the expectation of the posterior distribution and call it λ̂; this is your estimator of λ.4 pts
Solution: Using the expression for the expectation of a Gamma distribution, we
have λ̂ = (nX̄ + α)/(n+ β).

(c) Compute the bias and the variance of λ̂. (Note that these will depend on α and β.) Solution:10 pts
The expectation and variance of X̄ are respectively λ and λ/n , so

Biasα,β(λ) = Eλ̂− λ =
nEX̄ + α

n+ β
− λ =

nλ+ α− (n+ β)λ

n+ β
=
α− βλ
n+ β

.

1



The variance of p̂ is

V arα,β(λ) = Vλ̂ =
V(nX̄ + α)

(n+ β)2
=
n2V(X̄)

(n+ β)2
=

n2λ/n

(n+ β)2
=

nλ

(n+ β)2
.

(d) Is it possible to pick some α, β not depending on λ so that the resulting λ̂ is unbiased? Solution:2 pts
For any β, setting α = βλ leads to the respective λ̂ being unbiased. The only choice
of this type that does not depend of λ is to set α = β = 0. Although technically this
is not allowed for the prior, the resulting posterior is well defined when α = β = 0
and has expectation X̄.

(e) The estimator X̄ is the Maximum Likelihood estimator and has the smallest variance among8 pts
all estimators of λ. What is the optimal choice of α, β that you can make in practice so
that the corresponding λ̂ has the smallest possible Mean Squared Error? Justify your answer.
Solution: As we just saw, setting α = β = 0 leads to the posterior expectation
being the Maximum Likelihood estimator which is unbiased and has the smallest
variance of any estimator of λ. The bias-variance decomposition then tells us that
the Maximum Likelihood estimator has the smallest Mean Squared Error of any
estimator of p (no bias and smallest possible variance.) So any other choice of α
and β leads to an estimator with at least as much bias and at least as much variance
as the Maximum Likelihood Estimator. So to get the estimator with the smallest
Mean Squared Error we should set α = β = 0.
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Prob.II: One of the steps in the production of a certain drug involves a salt precipitation reaction in an
acid solution. The pH of the solution heavily affects the effectiveness of this step, and in turn the
production cost. The technical staff at your company tells you that a pH of 3.6 is ideal for such a
reaction. However, obtaining this exact value is difficult, since the solution uses some plant ingredients
and there is natural variation from batch to batch. Your technicians have been working really hard
at refining their procedures and provided you with pH measurements of 12 batches of solution.

3.50 3.60 3.85 3.34 3.69 3.81 3.64 3.72 3.80 3.33 3.80 3.58

The way that the measurements were made ensures these are statistically independent pH samples.
The technicians also tell you that the measurements have a normal distribution (although they have
no idea what the expectation and variance would be.)

Your goal here is to decide, based on the data above, if it seems like your technicians have finally
refined their technique enough to ensure that the expected pH of the solution is 3.6. If this is not
the case you need to know so you can tell them to further calibrate their procedure.

For the data above we have n = 12,
∑n

i=1 xi = 43.66,
∑n

i=1 x
2
i = 159.1936. You may also need one or

more of the following quantiles: t12;0.1 = −1.3562, t12;0.05 = −1.7823, t12;0.025 = −2.1788, t12;0.01 =
−2.681, t11;0.1 = −1.3634, t11;0.05 = −1.7959, t11;0.025 = −2.201, t11;0.01 = −2.7181, t10;0.1 = −1.3722,
t10;0.05 = −1.8125, t10;0.025 = −2.2281, t10;0.01 = −2.7638.

(a) Compute the sample mean and the sample variance. Solution: The sample mean is just4 pts
x̄ =

∑n
i=1 xi/n = 43.66/12 = 3.6383 . The sample variance can be computed as S2 =

n(x̄2 − x̄2)/(n− 1) = (159.1936− 43.662/12)/11 = 0.0313 .

(b) Suppose you want to test if the pH is really 3.6 with significance level α = 0.1. Conduct18 pts
the appropriate hypothesis test by clearly stating the null- and alternative-hypotheses,
an appropriate test statistic, and the rejection rule. Calibrate the test. What is your
conclusion at significance level α = 0.1? Solution: In this situation we clearly want to
test H0 : µ = 3.6 vs H1 : µ 6= 3.6 . We can take as test statistic T = X̄ . Considering the
alternative, clearly we want to reject H0 if X̄ is too different from 3.6 so our rejection
rule is that we reject H0 if |X̄−3.6| > c∗ for some appropriate c∗ . To calibrate the test
we need to ensure that we pick c∗ in such a way that the probability of rejecting
H0 when it is true is α (which we later want to take as 0.1.). Under the null,
X̄ ∼ N(3.6, σ2/n) so that, under the null, (X̄ − 3.6)/(S/

√
n) ∼ tn−1 . This means that

we want
α = Pµ=3.6(|X̄ − 3.6| > c∗) = 1− Pµ=3.6(|X̄ − 3.6| ≤ c∗),

so that

α = 1− Pµ=3.6(−c∗ ≤ X̄ − 3.6 ≤ c∗) = 1− Pµ=3.6(−
√
nc∗/S ≤

√
n(X̄ − 3.6)/S ≤

√
nc∗/S).

If Ftn−1 denotes the CDF of a tn−1 distribution, then we want

α = 1−
{
Ftn−1(

√
nc∗/S)− Ftn−1(−

√
nc∗/S)

}
.

Since Ftn−1(z) = 1 − Ftn−1(−z), this is the same as α = 1 −
{

1 − 2Ftn−1(−
√
nc∗/S)

}
or

α = 2Ftn−1(−
√
nc∗/S). We can now easily solve for c∗ to get Ftn−1(−

√
nc∗/S) = α/2 or
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−
√
nc∗/S = F−1

tn−1
(α/2) = tn−1;α/2 or c∗ = −S tn−1;α/2/

√
n. Plugging everything in, we

get c∗ = −
√

0.0313/12 t11;0.1/2 =
√

0.0313/12 1.7959 = 0.0917 . Since it is not true that
|x̄− 3.6| = |3.6383− 0.36| = 0.0383 is larger than 0.0917 the conclusion is that we do not
reject H0 at level 0.1 .

(c) Show that the p-value of the test that you designed in (b) is (approximately) 2Ftn−1(−0.7509).10 pts
What is your conclusion at significance level 0.1? Solution: We saw in the previous ques-
tion that we should reject H0 at level α if |x̄ − 3.6| = 0.0383 > c∗ = −S tn−1;α/2/

√
n

. So the values of α for which we reject satisfy −0.0383 ≤ −S tn−1;α/2/
√
n or

−
√
n0.0383/S ≤ tn−1;α/2. This means that all α such that α ≥ 2Ftn−1(−

√
n0.0383/S) =

2Ftn−1(−
√

120.0383/0.1768) = 2Ftn−1(−0.7509) lead to rejection. As such, since the
p-value is the smallest α for which we reject, we conclude that the p-value is
2Ftn−1(−0.7509) . This is actually 0.4684 which is larger than 0.1 (no rejection) but
you already know that at level 0.1 you don’t reject since the p-value just gives you
an alternative way of conduction the test but gives you the same answer at the
same significance level .

(d) Compute a two-sided 90% confidence interval for the mean pH. Could you have reached the8 pts
conclusion of your answer to (c) using this interval instead? Justify your answer. Solution:
We know that in this setting

√
n(X̄−µ)/S has a tn−1 distribution and is thus a pivot

for µ. We then know that

P
(
tn−1;0.05 ≤

√
n(X̄ − µ)/S ≤ −tn−1;0.05

)
= 0.9.

Solving the above for µ we get that [X̄+Stn−1;0.05/
√
n, X̄−Stn−1;0.05/

√
n] is a confidence

interval of level 0.9 for µ. Plugging everything in, we get that this confidence interval
is [3.5467, 3.7300] . The answer to the question is yes: since 3.6 belongs to this 0.9
level confidence interval, we know that we cannot reject H0 at level 0.1. As we saw
in class, a test that rejects H0 if 3.6 belongs to a 0.9 level confidence interval for µ
has level 1− 0.9 = 0.1.
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Prob.III: Imagine that you are managing an ice-cream parlour. One of the secrets behind the success of any
ice-cream store is the freshness of the ice-cream. Because of this, it is important for you to be able
to predict how much ice-cream needs to be made each day so that there are no left-overs. If you
over-produce then you have to sell left-overs and if you under-produce then you miss out on sales.

Over the years you’ve noticed a trend that might be useful: every evening you check the forecast of
the temperature for the following day and you’ve noticed that on days for which the weather forecast
is higher, you tend to sell more ice-cream. In the table below is a list of the forecasted highest
temperature and the respective amount of ice-cream sold in thirty randomly selected summer days
(only weekdays are considered). Figure 1 below shows a plot of the data.
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Figure 1: Plot of the ice-cream dataset.

forecasted ice-cream sold forecasted ice-cream sold
temperature (◦C) (liters) temperature (◦C) (liters)

25 18 15 11
21 15 30 18
18 14 31 19
16 12 29 19
22 13 32 21
16 10 23 16
17 11 23 15
20 14 22 16
26 18 20 12
25 18 21 15
24 16 23 14
24 17 29 17
27 19 32 20
28 20 21 11
29 20 27 16

Denote the measurements as (xi, yi) where xi represents the temperature forecast and yi the respective
amount of ice-cream sold. From the table: n = 30, x̄ = 23.8667, ȳ = 15.8333, SSxx = 691.4667,
SSxy = 403.3333, and SSyy = 284.1667.

5



A strategy starts forming in your mind: if you had a way of predicting ice-cream demand based on
the temperature forecast you could use that to decide how much ice-cream to make in advance...

(a) Describe a Simple Linear Regression model to explain the amount of ice-cream sold (Y ) as a6 pts
function of the temperature forecast (x). Make sure to write down the model equation, and
list the necessary assumptions on the noise term. You can assume that the noise is normal;
denote the slope and intercept as β and α, respectively. Solution: We model each response
as Yi = α+ βxi + σεi . In the Simple Linear Regression model we assume that the εi
terms are i.i.d., with expectation 0 and variance 1 . In this particular case you can
also just say that the noise terms are i.i.d. N(0, 1) .

(b) The temperature forecast for tomorrow is 27 degrees. Give a point estimate of the expected10 pts
amount of ice-cream that will be sold. Solution: We can use α̂+ 27× β̂ to estimate the
expected amount of ice-cream that will be sold in a day with temperature forecast
of 27 degrees Celsius . We have that β̂ = Sxy/SSxx = 403.3333/691.4667 = 0.5833

and α̂ = ȳ − x̄ × SSxy/SSxx = ȳ − x̄ × β̂ = 15.8333 − 23.8667 × 0.5833 = 1.9119 . So our

point estimate for the expected quantity of ice-cream that will be sold is α̂+ 27β̂ =
1.9119 + 27× 0.5833 = 17.6610 litres .

(c) Test the significance of the regression by showing that the p-value associated with the test of12 pts
H0 : β = 0 against H1 : β 6= 0, where β is the true slope value in the model, is 2Ft28(−12.0137) ≈
0. What do you conclude? You should use the fact that you know that

√
SSxx

β̂ − β
σ̂
∼ tn−2.

Solution: We can use T = β̂ (or just the pivot above) as test statistic and should
reject if |T | > c∗ . Under the null we know that

√
SSxx(β̂ − 0)/σ̂ ∼ tn−2 so for a test

of level α we need

α = Pβ=0(|β̂| > c∗) = Pβ=0(|
√
SSxxβ̂/σ̂| >

√
SSxxc

∗/σ̂).

Using that Ftn−2(z) = 1− Ftn−2(−z), this is the same as

α = 1−
{
Ftn−2(

√
SSxxc

∗/σ̂)− Ftn−2(−
√
SSxxc

∗/σ̂)
}

= 2Ftn−2(−
√
SSxxc

∗/σ̂).

From this we conclude that using the critical value c∗ = −σ̂tn−2;α/2/
√
SSxx leads

to a test of level α . The α that lead to rejection are the ones for which
|β̂| > −σ̂tn−2;α/2/

√
SSxx. Solving for α gives tn−2;α/2 = F−1

tn−2
(α/2) > −

√
SSxx|β̂|/σ̂, or α >

2Ftn−2(−
√
SSxx|β̂|/σ̂). So the smallest α that leads to rejection is 2Ftn−2(−

√
SSxx|β̂|/σ̂),

so that is the p-value . We already know that β̂ = 0.5833 and that SSxx =

691.4667, so we just need to compute σ̂. This is σ̂ =
√
SSyy/n− β̂2SSxx/n =√

284.1667/30− 0.58332 × 691.4667/30 = 1.2767 . Plugging everything in we see
that p-value= 2Ftn−2(−

√
691.4667|0.5833|/1.2767) = 2Ftn−2(−

√
691.4667|0.5833|/1.2767) =

2Ftn−2(−12.0137) ≈ 0. Under these circumstances we can conclude that that we re-
ject the null at pretty much any significance level and so conclude that β 6= 0.
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