
X 400004 - Statistics

Solutions to the Mock Final Exam

9 December 2020

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only but should inform the
level of detail that is expected from your answers in the exam. Also keep in mind that there
might be different ways to approach each question. If you find typos and or omissions, please
report them to the lecturer so they can be corrected.

Prob.I: Consider a random sample X1, . . . , Xn of size n from the Ber(p) distribution, where p ∈ [0, 1] and
suppose that you put a Beta(α, β) prior on p. This problem concerns the choice of the hyper-
parameters α and β.

A few facts that you may need to know in order to solve this questions are:

• If X ∼ Ber(p), then the probability mass function of X is f(x) = px(1− p)1−x;

• If Y ∼ Beta(α, β), α, β > 0, then the probability density function of Y is f(y) = yα−1(1−y)β−1

B(α,β) ;

• If Y ∼ Beta(α, β), then EY = α/(α+ β), and VY = αβ/
{

(α+ β)2(α+ β + 1)
}

;

(a) Compute the posterior distribution of p. Solution: The posterior distribution on p is
proportional to the likelihood times the prior. The likelihood is

L(p) = pX1(1− p)1−X1 × · · · × pXn(1− p)1−Xn = pnX̄(1− p)n−nX̄ .

The prior density is π(p) ∝ pα−1(1 − p)β−1. Combining the two we get that the
posterior density satisfies

π(p | X1, . . . , Xn) ∝ L(p)π(p) ∝ pnX̄(1− p)n−nX̄pα−1(1− p)β−1 = pnX̄+α−1(1− p)n−nX̄+β−1.

We identify this as being proportional to the density of a Beta(nX̄ + α, n− nX̄ + β)
distribution. We conclude that the posterior is Beta(nX̄ + α, n− nX̄ + β).

(b) Compute the expectation of the posterior distribution and call is p̂; this is your estimator of p.
Solution: Using the expression for the expectation of a Beta distribution, we have

p̂ =
nX̄ + α

nX̄ + α+ n− nX̄ + β
=

nX̄ + α

n+ α+ β
.
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(c) Compute the bias and the variance of p̂. (Note that these will depend on α and β.) Solution:
The expectation and variance of X̄ are respectively p and p(1− p)/n, so

Biasα,β(p) = Ep̂− p =
nEX̄ + α

n+ α+ β
− p =

np+ α− (n+ α+ β)p

n+ α+ β
=
α(1− p)− βp
n+ α+ β

.

The variance of p̂ is

V arα,β(p) = Vp̂ =
V(nX̄ + α)

(n+ α+ β)2
=

n2V(X̄)

(n+ α+ β)2
=
n2p(1− p)/n
(n+ α+ β)2

=
np(1− p)

(n+ α+ β)2
.

(d) Is it possible to pick hyperparameters α, β (not depending on p) so that the resulting p̂ is
unbiased? If so, what is the resulting estimator? Solution: For any α, setting β = α(1−p)/p
leads to the respective p̂ being unbiased. The only choice of this type that does
not depend of p is to set α = β = 0. Although technically this is not allowed for the
prior, the resulting posterior is well defined when α = β = 0 and has expectation X̄.

(e) The estimator X̄ is the Maximum Likelihood estimator and as such has the smallest variance
among any estimator of p. Is it possible to pick α, β so that the corresponding p̂ has a smaller
Mean Squared Error than the Maximum Likelihood estimator? (Justify your answer.) So-
lution: As we just saw, setting α = β = 0 leads to the posterior expectation being
the Maximum Likelihood estimator which is unbiased and has the smallest variance
of any estimator of p. The bias-variance decomposition then tells us that the Max-
imum Likelihood estimator has the smallest Mean Squared Error of any estimator
of p (no bias and smallest possible variance.) Any other choice of α and/or β will
increase the bias and lead to an estimator which is not the Maximum Likelihood
estimator and therefore has variance than is at least as large as the one of the
Maximum Likelihood estimator. The answer is therefore no: setting α = β = 0 gives
us the Maximum Likelihood estimator which is the estimator of p with the small-
est Mean Squared Error in this setting; any other choice for the hyper-parameters
leads to an estimator with larger Mean Squared Error.
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Prob.II: One of the important features of the power supply unit of a computer server is to deliver power to
the server at a steady voltage, regardless of the demand of the server. You are considering placing
a large order of power units for a cluster of servers that your company is setting up but, since these
are quite expensive, you want to know if they work as advertised.

To do this, you purchased one power unit and carefully measured the output voltage every hour, for
one day. Let X1, . . . X24 be independent random variables modelling the voltage output (in volt) for
each of the 24 hourly measurements. It can safely be assumed these have a Normal distribution with
unknown mean µ, and standard deviation σ = 0.25 volt.

Suppose that these units are advertised to have an output of 5 volt; you are quite confident that the
output is not above 5 volt. You are not sure, however, if it might happen that the voltage might drop
below 5 volt – if this were to happen, then the server might shut down, with dramatic consequences.

(To answer the following questions you may need one or more of the following quantiles: z0.01 = −2.33,
z0.0125 = −2.24, z0.025 = −1.96, z0.05 = −1.64.)

(a) You decide to base your purchase decision on the outcome of a statistical test. You want to
make sure that you set up the test such that there is a small chance α that the test will tell
you not to buy the power units in the case where the units work as advertised. Formulate the
appropriate null hypothesis and alternative hypothesis for such a test. Solution: Based
on the description, rejecting means “not buying” and the only situation where we
don’t buy is when the voltage is too low (meaning lower than the advertised 5 volt.)
This means that the correct hypotheses to consider are H0 : µ = 5 vs H1 : µ < 5 (the
null corresponds to what is advertised and the alternative is what would give us a
reason not to buy.)

(b) Report an appropriate test statistic to be used and the rejection rule that ensures that the
test has the right significance level. Calibrate the test to have significance level α = 0.05.
Solution: As test statistic we can use T = X̄ and, based on the alternative, we
should reject if T ≤ c∗ for some appropriate c∗. We need to pick c∗ so that under
the null hypothesis (i.e., when µ = 5 volt) we reject H0 with probability α. Since
under the null T = X̄ ∼ N(5, 0.252/n), then

α = Pµ=5(T ≤ c∗) = Pµ=5

(√
n
T − 5

0.25
≤
√
n
c∗ − 5

0.25

)
= Φ

(√
n
c∗ − 5

0.25

)
.

This means we want
√
n(c∗ − 5)/0.25 = Φ−1(α) = zα, which solving for c∗ gives c∗ =

5 + 0.25zα/
√
n. Plugging in α = 0.05 so that zα = −1.645, and setting n = 24, we get

c∗ = 4.9161. So the test that rejects H0 when T ≤ 4.9161 has level 0.05.

(c) From the measurements that you took, you computed a voltage sample mean of x̄ = 4.91 volt.
Show that the p-value of the test is Φ(−1.7636) = 0.0389. Should you reject the null hypothesis
at significance level α = 0.05? Solution: The p-value is the smallest significance level at
which we would reject so it is the smallest α such that 4.91 = t ≤ c∗ = 5 + 0.25zα/

√
24.

Solving this for α we see that we reject if
√

24(4.91 − 5)/0.25 ≤ zα = Φ−1(α), or if
α ≥ Φ(

√
24(4.91− 5)/0.25) = Φ(−1.7636) = 0.0389; we conclude that the smallest α that

leads to rejection is 0.0389 and this is our p-value. Since the p-value is smaller
than 0.05, the conclusion is that we should reject H0 (and thus not buy the power
adapters.)
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(d) Repeat question (c), for a significance level α = 0.01. In other words, compute the p-value and
make a decision when α = 0.01. Solution: The value of the test statistic and the p-
value obviously don’t change. The only thing that changes is that now the p-value
is greater than 0.01 and so we do not reject the null.

(e) Suppose that actually µ = 4.95 volt. Is the power of the test in (b) at least 0.5? (Justify your
answer by computing the power.) Solution: The power when µ = 4.95 is the probability
of rejecting H0 when µ = 4.95. We reject H0 if T ≤ 4.9161, so the power in this case is
Pµ=4.95(T ≤ 4.9161) = Pµ=4.95(

√
24(T − 4.95)/0.25 ≤

√
24(4.9161− 4.95)/0.25) = Φ(−0.6651).

This is less than 0.5 since Φ is increasing, −0.6651 < 0, and Φ(0) = 1/2.
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Prob.III: A common background sound in many places during Summer when you go for a walk in nature is the
sound of field crickets. You may have noticed before that crickets tend to chirp (sing) faster when
it’s warmer. In Table 1 you can see some data (xi, Yi), i = 1, . . . , 42: the xi represents the number of
times that a cricket chirped in 60 seconds, and Yi represents the respective temperature (in degrees
Celsius) at the time that you counted the chirps. We plot the data in Figure 1.
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Figure 1: Plot of the cricket dataset.

The data in Figure 1 seems to suggest that the relation between the number of times that a cricket
chirps and the outside temperature might be linear. The actual data follows in Table 1.

Variables Values

(x1, . . . , xn) 111 112 117 121 123 130 132 136 138 146 150 150 150 151 153 156 160
160 161 162 162 166 168 173 178 178 180 183 185 186 187 191 192 192
193 193 196 197 200 201 208 214

(y1, . . . , yn) 16.29 20.43 20.29 19.94 20.56 20.91 25.32 27.17 26.98 23.85 29.43 24.88
30.99 27.54 24.78 24.08 23.64 23.95 22.59 30.90 29.92 27.32 29.08 27.87
37.04 27.33 29.84 31.18 32.57 30.34 24.33 27.78 32.79 31.68 29.04 31.51
29.84 33.16 28.58 34.10 34.75 35.05

Table 1: The cricket dataset.

From the observations in Table 1 we see that nx̄ = 6942.00, nȳ = 1159.60, SSxx = 31894.57, and
SSxy = 4355.36. There are 42 measurements in total.

(a) Suppose that you would like to use a Simple Linear Regression model to derive a formula that
allows you to predict the outside temperature (Y ) based on the number of times that a cricket
chirps in 60 seconds (x). In a linear regression model you assume that

Yi = α+ β xi + εi, i = 1, . . . , n,

where α, β ∈ R are unknown, and the εi are random error terms. In order for Simple Linear
Regression to be an adequate model here, what should you assume about: (i) the relation
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between (xi, Yi) and (xj , Yj), i 6= j; (ii) the expectation of the noise terms εi; (iii) the variance
of the noise terms εi.

Solution: (i) These should be independent; (ii) the noise should have expectation
0; (iii) the variance should not depend on i.

(b) Consider the data from Table 1 and assume that the assumption from (a) hold. Based on the
data, what are your estimates of the intercept and the slope of the line in your model? (If you
do not manage to compute the estimates, assume in the following that your prediction formula
is Ŷ = 7.82 + 0.11x.)

Solution: We have that β̂ = SxY /SSxx = 4355.36/31894.57 = 0.1366 and α̂ = Ȳ − x̄ ×
SSxY /SSxx = Ȳ − x̄× β̂ = 1159.60/42− 6942.00/42× 0.1366 = 5.0378.

(c) It might just be that there is actually no relation between x and Y . In this case you would
expect x not to help explain Y or, in other words, you would expect the slope β to be 0. To
test this out assume that the noise terms have a Normal distribution with standard deviation
σ = 2. Based on the fact that you know that in this case

β̂ ∼ N
(
β,

σ2

SSxx

)
,

derive an exact, 95% confidence interval for β. Based on this, what do you conclude about
the possibility that the slope might be 0? (You may need one or more of the following Normal
quantiles: z0.01 = −2.33, z0.0125 = −2.24, z0.025 = −1.96, z0.05 = −1.64.)

Solution: From the distribution of β̂ we see that Z = (β̂ − β)/(σ/
√
SSxx) ∼ N(0, 1)

is a pivot. This means that P(z0.025 ≤ Z ≤ z1−0.025) = 1 − 0.05 = 0.95. The event
{z0.025 ≤ Z ≤ z1−0.025} is the same as {z0.025 ≤ Z ≤ −z0.025} which is the same as
{z0.025 ≤ (β̂−β)/(σ/

√
SSxx) ≤ −z0.025} which in turn is the same as {β̂+σz0.025/

√
SSxx ≤

β ≤ β̂−σz0.025/
√
SSxx}. We conclude that P(β̂+σz0.025/

√
SSxx ≤ β ≤ β̂−σz0.025/

√
SSxx) =

0.95, so that [β̂+σz0.025/
√
SSxx, β̂−σz0.025/

√
SSxx] is a confidence interval of β of level

0.95. Plugging in σ = 2, z0.025 = −1.96, and the values of β̂ and SSxx, we get
[0.1146, 0.1585] which does not contain 0, so we can be quite confident that β 6= 0.

(d) Say that you go outside and hear a cricket chirp 181 times in 60 seconds. What would be your
prediction of the outside temperature?

Solution: Using our prediction formula Ŷ = α̂ + β̂ × x = 5.0378 + 0.1366 × x and
plugging in x = 181 we get the prediction Ŷ = 29.7560. (Using the prediction formula
Ŷ = 7.82 + 0.11× x you would get Ŷ = 27.73.)
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