
X 400004 - Statistics

Solutions to the Midterm Exam

23 October 2020

Below are answers to the exam questions. Some of these are slightly abbreviated, while
others include extra comments. These are for your reference only but should inform the
level of detail that is expected from your answers in the exam. Also keep in mind that there
might be different ways to approach each question. If you find typos and or omissions, please
report them to the lecturer so they can be corrected.

Prob.I: When modelling the amount of time spent in baggage handling procedures at an airport, you come
across the following statistical problem. Let X1, . . . , Xn be a random sample distributed like X which
has a probability density function given by

f(x) =

{
x
λe
−x/
√
λ if x ≥ 0

0 otherwise
,

where λ > 0 is an unknown parameter. Note that (you can just take these as facts)

E[X] = 2
√
λ, E[X2] = 6λ, E[X3] = 24λ3/2, E[X4] = 120λ2.

Consider two different estimators for λ, namely

λ̂ =
(X̄)2

4
, and λ̃ =

1

6n

n∑
i=1

X2
i .

(a) Compute the bias of λ̂ and of λ̃. Is any of the two estimators unbiased? What happens to the15 pts
bias as n increases?

Solution: Let us start with λ̂. Recall the properties of the sample mean, namely
E[X̄] = E[Xi] and V(X̄) = V(Xi)/n. Therefore

Eλ̂ = E
[

(X̄)2

4

]
=

1

4
E
[
X̄2
]

=
V(X̄) + (E[X̄])2

4
=

V(Xi)/n+ (E[Xi])
2

4
.

Now note that V(Xi) = E[X2
i ]− (E[Xi])

2 = 2λ and so

Eλ̂ =
2λ/n+ 4λ

4
= λ+

λ

2n
.

In conclusion, the bias of this estimator is

biasλ̂(λ) = E[λ̂]− λ =
λ

2n
,
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and so this estimator is biased but the bias converges to zero as n→∞.
For λ̃ the derivation is simpler. Note that

E[λ̃] = E
[∑n

i=1X
2
i

6n

]
=

1

6n

n∑
i=1

E
[
X2
i

]
=

1

6n

n∑
i=1

6λ = λ.

In conclusion, λ̃ is unbiased since (regardless of n) its bias is

biasλ̃(λ) = E[λ̃]− λ = 0.

(b) Compute the mean squared error (MSE) of λ̃.10 pts

Solution: The MSE of λ̃ is equal to its variance, since the estimator is unbiased :

V(λ̃) = V
(∑n

i=1X
2
i

6n

)
=

1

36n2

n∑
i=1

V(X2
i ) =

E[X4
i ]− (E[X2

i ])2

36n
=

120λ2 − 36λ2

36n
=

7

3n
λ2,

so that MSEλ̃(λ) = 7
3nλ

2.

(c) It can be shown that V(λ̂) = 2λ2/n. Use this fact to compute the MSE of λ̂. Assuming n = 1007 pts
which estimator is better in terms of MSE?

Solution: By the bias-variance decomposition , the MSE of λ̂ is

MSEλ̂(λ) = bias2
λ̂
(λ) + Varλ̂(λ) =

λ2

4n2
+

2λ2

n
.

For n = 100 we have MSEλ̂(λ) < MSEλ̃(λ) and so the first estimator is preferable
in that regard. Actually, the first estimator is better provided n ≥ 3/4, which
effectively means it is always better in terms of MSE, regardless of the sample size.
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Prob.II: Consider a random sample X1, . . . , Xn from a gamma distribution with parameters α > 0, and β > 0,
which are unknown to you. The probability density function of each observation is

f(x) =
βαxα−1e−βx

Γ(α)
, x ≥ 0,

and f(x) = 0 if x < 0. The function Γ is the gamma function. What is relevant for you here is that
if X is distributed like f , then

EX =
α

β
, and VX =

α

β2
.

(a) Write down the system of equations that you would have to solve to compute the Maximum10 pts
Likelihood estimator (MLE) for α and β. (You don’t need to solve the system and you
don’t need to compute Γ′(α).)

Solution: For a random sample, the likelihood is the product of the density of each
observation evaluated at that observation:

L(θ) =
βαXα−1

1 e−βX1

Γ(α)
× · · · × βαXα−1

n e−βXn

Γ(α)
=
βnα (

∏n
i=1Xi)

α−1 e−β
∑n

i=1Xi

Γ(α)n
.

To get the MLE we take the take the natural logarithm to get the log-likelihood:

`(θ) = nα log β + (α− 1) log

(
n∏
i=1

Xi

)
− β

n∑
i=1

Xi − n log Γ(α).

The system that we would have to solve to get the MLE would then be{
∂`(θ)
∂α = 0
∂`(θ)
∂β = 0

⇔

{
n log β + log (

∏n
i=1Xi)− nΓ′(α)

Γ(α) = 0
nα
β −

∑n
i=1Xi = 0

.

(b) The system from (a) looks complicated, so instead we compute the Method of Moments estimator10 pts
(MME). Compute the MME of α and β based on the first two moment of X.

Solution: Since VX = E(X2) − (EX)2, then E(X2) = VX + (EX)2 = (α + α2)/β2. The
MME of α and β then satisfy X = α̂/β̂ and X2 = (α̂ + α̂2)/β̂2. From the first
relation we have that Xβ̂ = α̂ which when plugged into the second relation gives

X2 = X/β̂ + X
2
, or β̂ = X/(X2 − X2

). Plugging this into the first relation gives

α̂ = X
2
/(X2 −X2

).

(c) Assume now that β = α. Is it possible to get an MME of α based on the first moment? Justify5 pts
your answer.

Solution: If β = α, then EX = 1 which does not depend on α. So it is not possible
to get an MME of α from the first moment.

(d) Still for the case when β = α, derive the MME of α based on the second moment.6 pts

Solution: If β = α, then the second moment is E(X2) = 1/α + 1. So the MME
satisfies X2 = 1/α̂+ 1. Solving for α̂ gives α̂ = 1/(X2 − 1).
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Prob.III: Digital security and bot detection is nowadays an important concern for businesses and companies,
and monitoring keystroke dynamics gives a way to prevent improper access to a computer. By
checking if the typing behaviour of the current user is “compatible” with that of the legitimate user
one can potentially detect an attacker and react accordingly.

We asked the legitimate user of a certain system to type a short text (with 235 characters), while the
time between consecutive keystrokes was recorded. The corresponding data of the 234 inter-
keystroke times (in seconds) can be found at the end of the questionnaire, together
with a collection of descriptive statistics, various graphical representations of the data,
as well as quantiles for different distributions.

Although not entirely plausible, assume that the data is the realisation of a random sample from
some unknown distribution.

(a) Determine the sample mean, sample variance, sample standard deviation, and range of the10 pts
dataset. (Don’t forget to report the units.)

Solution: The sample Mean is x̄ = 1
n

∑n
i=1 xi = 46.616/234 = 0.199213675213675

(seconds) , the sample variance is s2 = n
n−1

(
x2 − x̄2

)
= (234/233) ×(

12.098/234− 0.1992136752136752
)

= 0.0120683698551044 (seconds2) , the standard de-

viation is s =
√

0.0120683698551044 = 0.109856132532983 (seconds) , and the range is
(read from the box-plot) 0.7438− 0.0013 = 0.7425 (seconds).

(b) Briefly explain how each of the plots below supports/contradicts the possibility that the data9 pts
comes from a Normal distribution.

Solution: It is not reasonable to assume normality. The box-plot is not symmetric
and has a large number of outliers on one side. The histogram is not bell-shaped,
not symmetric, and the tails look differently thick. The points in the QQ plot are
clearly not arranged in a line. All these indicate that the normality assumption is
not reasonable at all.

(c) Construct an approximate, two-sided, 90% confidence interval for the expectation of the inter-18 pts
keystroke time and compute its realisation from the data at hand. (This means that you
need to derive the expression for the interval from an appropriate pivot, not just
write down the interval.) In light of your answer to (b), is it sensible to compute such an
interval in this case? Justify your answer.

(You can find quantiles that you may need in this question at the end of the questionnaire.)

Solution: Since we are told that we can think of our sample as being a random
sample (i.i.d. sample) by the CLT we know that

X̄ − EX√
VX/n

≈ N(0, 1),

and by the law of large numbers we know that S2 ≈ VX, where S2 is the sample
variance, so we conclude that

T =
X̄ − EX√
S2/n

=
√
n
X̄ − EX

S
≈ N(0, 1),
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is a near-pivot for the expectation of X. (Since n is large you could also use the
t233 quantiles because the two are close.)

By the definition of the quantiles,

P (z0.05 ≤ T ≤ z0.95) ≈ 0.95− 0.05 = 0.9,

so that

P
(
z0.05 ≤

√
n
X̄ − EX

S
≤ z0.95

)
≈ 0.9.

Isolating EX in the middle (and eventually using that z0.05 = −z1−0.05) leads to the
approximate 90% CI for EX,[

X̄ − z0.95
S√
n
, X̄ + z0.95

S√
n

]
.

Plugging in all of the information we get the following realisation of the CI:[
x̄− z0.95

s√
n
, x̄+ z0.95

s√
n

]
=

[
0.1992− 1.64

0.1099√
234

, 0.1992− 1.64
0.1099√

234

]
= [0.1874, 0.2110] (sec.).

The interval is reasonable since even though the data doesn’t seem to be Normal,
n is large and therefore the CLT and LLN apply.
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Data (time in seconds):

0.1746, 0.4319, 0.2015, 0.4939, 0.2023, 0.2065, 0.1692, 0.1526, 0.1651, 0.1133,

0.1307, 0.1697, 0.1915, 0.1128, 0.3344, 0.2132, 0.2841, 0.2166, 0.1503, 0.1612,

0.0973, 0.1221, 0.3645, 0.0176, 0.0954, 0.1681, 0.1816, 0.1176, 0.2608, 0.177,

0.2935, 0.4291, 0.2228, 0.1249, 0.4702, 0.1368, 0.1205, 0.1228, 0.203, 0.3926,

0.2743, 0.112, 0.1623, 0.1488, 0.2185, 0.136, 0.2828, 0.1177, 0.0961, 0.4464,

0.2117, 0.2364, 0.2203, 0.5848, 0.1606, 0.1754, 0.3835, 0.1097, 0.4526, 0.0857,

0.1024, 0.2436, 0.1932, 0.4019, 0.0468, 0.12, 0.2701, 0.1181, 0.0213, 0.2189,

0.1934, 0.1529, 0.1264, 0.0947, 0.2867, 0.1699, 0.2312, 0.1651, 0.1615, 0.0924,

0.1276, 0.272, 0.1693, 0.2693, 0.2044, 0.1903, 0.3496, 0.1291, 0.1055, 0.5198,

0.2675, 0.2789, 0.124, 0.3314, 0.0809, 0.1115, 0.1012, 0.1225, 0.1403, 0.2691,

0.1466, 0.0781, 0.1562, 0.1477, 0.1162, 0.2018, 0.1644, 0.1852, 0.2912, 0.2202,

0.2528, 0.1537, 0.1127, 0.1973, 0.0968, 0.1232, 0.1603, 0.1013, 0.1945, 0.2184,

0.15, 0.1201, 0.179, 0.1497, 0.0714, 0.3035, 0.0355, 0.1144, 0.2885, 0.1711,

0.2089, 0.1969, 0.1926, 0.32, 0.2484, 0.2346, 0.0477, 0.2503, 0.1885, 0.1429,

0.2544, 0.1772, 0.1831, 0.1497, 0.1693, 0.1289, 0.1731, 0.1595, 0.2684, 0.1315,

0.1445, 0.3315, 0.1895, 0.18, 0.1254, 0.1393, 0.1574, 0.1938, 0.3278, 0.0729,

0.578, 0.1005, 0.1975, 0.206, 0.168, 0.133, 0.0808, 0.082, 0.3079, 0.1512, 0.4028,

0.1466, 0.2502, 0.1869, 0.2485, 0.1, 0.128, 0.1343, 0.1428, 0.2834, 0.1803, 0.1558,

0.1723, 0.116, 0.1859, 0.2682, 0.2796, 0.0173, 0.1367, 0.2287, 0.1406, 0.1643,

0.1997, 0.2752, 0.0013, 0.3155, 0.0389, 0.2236, 0.0837, 0.2119, 0.0915, 0.2715,

0.2208, 0.192, 0.1946, 0.2639, 0.1211, 0.1812, 0.1874, 0.2448, 0.1898, 0.5933,

0.119, 0.1937, 0.1153, 0.2348, 0.2047, 0.144, 0.332, 0.0683, 0.1022, 0.1438,

0.2002, 0.407, 0.1228, 0.5608, 0.2065, 0.2541, 0.067, 0.3595, 0.1416, 0.1851,

0.3603, 0.7438

n = 234,

234∑
i=1

Xi = 46.616,

234∑
i=1

X2
i = 12.098

Histogram of the data
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Figure 1: Some summary plots for the keystroke dataset.

Quantiles from different distributions follow below.
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Some quantiles from the Normal distribution:

z0.01 = −2.33, z0.025 = −1.96, z0.05 = −1.64, z0.95 = 1.64, z0.975 = 1.96, z0.99 = 2.33.

Some quantiles from the t233 distribution:

t233;0.01 = −2.34, t233;0.025 = −1.97, t233;0.05 = −1.65, t233;0.95 = 1.65, t233;0.975 = 1.97, t233;0.99 = 2.34.

Some quantiles from the t234 distribution:

t234;0.01 = −2.34, t234;0.025 = −1.97, t234;0.05 = −1.65, t234;0.95 = 1.65, t234;0.975 = 1.97, t234;0.99 = 2.34.

Some quantiles from the χ2
233 distribution:

x2
233;0.01 = 185.74, x2

233;0.025 = 192.62, x2
233;0.05 = 198.67, x2

233;0.95 = 269.61, x2
233;0.975 = 277.17, x2

233;0.99 = 286.14.

Some quantiles from the χ2
234 distribution:

x2
234;0.01 = 186.63, x2

234;0.025 = 193.52, x2
234;0.05 = 199.59, x2

234;0.95 = 270.68, x2
234;0.975 = 278.26, x2

234;0.99 = 287.25.
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