Department of Mathematics	midterm exam Statistics
VU	October 25, 2019

- You are not allowed to use calculators, phones, laptops, or other tools.
- Clearly put your name and student number on all sheets that you submit.
- The asterix (*) in problems 2(c) and 2(d) indicates that these are optional bonus questions. You can obtain a 10 without doing these problems.

Good luck!

1. Let X_1, \ldots, X_n be i.i.d. random variables with density p_θ given by

$$p_{\theta}(x) = \frac{1}{2}\theta e^{-\theta|x|}, \quad x \in \mathbb{R},$$

where $\theta > 0$ is an unknown parameter.

- (a) Compute the first two moments $\mathbb{E}_{\theta}X_1$ and $\mathbb{E}_{\theta}X_1^2$ of X_1 and give a method of moments estimator for θ .
- (b) Determine the maximum likelihood estimator for θ .
- (c) Now we want to obtain a Bayesian estimator for the parameter θ . As prior distribution we choose a gamma distribution, with parameters $\alpha, \beta > 0$. This is the distribution with density

$$\pi(\theta) = \frac{\theta^{\alpha-1}\beta^{\alpha}e^{-\beta\theta}}{\Gamma(\alpha)}, \qquad \theta > 0,$$

where

$$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} \, dx$$

is Euler's gamma function.

Determine the posterior distribution of θ .

- (d) Determine the Bayes estimator for θ . You may use the fact that the expectation and variance of the gamma distribution with parameters α and β are given by α/β and α/β^2 , respectively.
- 2. Let X_1, \ldots, X_n be i.i.d. random variables with density given by

$$p_{\lambda}(x) = \frac{1}{\lambda}e^{-x/\lambda}, \quad x > 0,$$

where $\lambda > 0$ is an unknown parameter.

- (a) Determine the Fisher information for λ in the whole vector (X_1, \ldots, X_n) .
- (b) Determine the Cramér-Rao lower bound for the variance of an unbiased estimator for λ .
- (c*) Show that for the maximum likelihood estimator $\hat{\lambda}_n$ we have the convergence in distribution

$$\sqrt{n}(\hat{\lambda}_n - \lambda) \stackrel{\mathrm{d}}{\longrightarrow} N(0, 1/i_{\lambda})$$

- as $n \to \infty$, with i_{λ} the Fisher information in a single observation. Prove this statement yourself, without using the general theorem about the MLE.
- (d*) Explain in which sense the maximum likelihood estimator $\hat{\lambda}_n$ is an (asymptotically) optimal estimator for λ .
- 3. Opinion poller Maurice is interested in the fraction p of Dutch people in favour of reducing the number of cattle in The Netherlands. He calls 200 people at random and asks them whether they are in favour of this. Let X be the number of people that answer that they agree.
 - (a) If we assume that Dutch people are independent thinkers, what is a reasonable statistical model for this problem?
 - (b) Maurice wants to know whether the fraction p is greater than 1/2. Formulate this as a statistical testing problem.
 - (c) Give the derivation of the standard test of level $\alpha = 0.05$ for this problem. You may use the fact that for the distribution function F of the binomial distribution with parameters n = 200 and p = 1/2 it holds that

$$F(110) = 0.931$$
, $F(111) = 0.948$, $F(112) = 0.961$, $F(113) = 0.972$.

- (d) Suppose that 111 of the 200 people say that they are in favour of reducing the number of cattle. Can Maurice then conclude that indeed p > 1/2?
- 4. Let X_1, \ldots, X_n be i.i.d., $N(\mu, 1)$ -distributed random variables, with unknown parameter $\mu \in \mathbb{R}$.
 - (a) We want to show that $\mu > 0$. Formulate this as a testing problem and give an appropriate test statistic.
 - (b) Suppose that we observe the realisation x_1, \ldots, x_n . Give an expression for the corresponding p-value for this testing problem, in terms of the distribution function of a known distribution. Motivate your answer by giving a derivation.

Norming:

1(a): 3 2(a): 3 3(a): 1 4(a): 2 1(b): 3 2(b): 2 3(b): 1 4(b): 3

1(c): 3 $2(c^*)$: 3 3(c): 3