| Short answers to selected exercises from the practice midterm | Statistics |
|---------------------------------------------------------------|------------|
| VU                                                            | Fall 2019  |

3 (a) The Fisher information in a single observation is

$$i_{\lambda} = \mathbb{V}\mathrm{ar}_{\lambda} \Big( \frac{\partial}{\partial \lambda} \log p_{\lambda}(X_1) \Big) = \mathbb{V}\mathrm{ar}_{\lambda} X_1 = \frac{1}{\lambda^2}.$$

Hence, the Fisher information in the whole vector  $(X_1, \ldots, X_n)$  is  $I_{\lambda} = ni_{\lambda} = n/\lambda^2$ .

(b) The Cramér-Rao lower bound for the variance of an unbiased estimator of  $g(\lambda)=1/\lambda$  is

$$\frac{(g'(\lambda))^2}{I_{\lambda}} = \frac{(-1/\lambda^2)^2}{n/\lambda^2} = \frac{1}{n\lambda^2}.$$

(c) The likelihood for  $\lambda$  is  $\lambda^n \exp(-n\sum_{i=1}^n x_i)$ . By taking logarithms and differentiating with respect to  $\lambda$  we find that the score function is  $n/\lambda - \sum_{i=1}^n x_i$ . Setting this equal to 0 (and checking that we have a maximum), we see that the MLE for  $\lambda$  is  $1/\bar{X}$ . Hence, the MLE for  $1/\lambda$  is  $\bar{X}$ .

We have that  $\mathbb{E}_{\lambda}X_1 = 1/\lambda$  and  $\mathbb{V}\operatorname{ar}_{\lambda}X_1 = 1/\lambda^2$ . The central limit theorem then implies that

$$\sqrt{n}(\bar{X} - 1/\lambda) \xrightarrow{\mathrm{d}} N(0, 1/\lambda^2)$$

as  $n \to \infty$ . Hence, for large  $n, \sqrt{n}(\bar{X}-1/\lambda)$  approximately has a  $N(0,1/\lambda^2)$ -distribution. This implies that  $\bar{X}$  is approximately  $N(1/\lambda,1/(n\lambda^2))$ -distributed.

- (d) Part (c) shows that for large n,  $\bar{X}$  approximately has mean  $1/\lambda$  and variance  $1/(n\lambda^2)$ . Hence the estimator is approximately unbiased for  $1/\lambda$  and by (b) its variance approximately equals the Cramér-Rao lower bound.
- 5 (a) The hypotheses are  $H_0: \mu \leq 1$  and  $H_1: \mu > 1$ . This is the situation of the Gauss test. So we use the test statistic  $T = \sqrt{n}(\bar{X} 1)/\sigma$ .
  - (b) Form of the critical region: Large values of T indicate that  $H_1$  is true. Hence, we use a test of the form "reject  $H_0$  if  $T \geq c$ " for some appropriately chosen constant  $c \in \mathbb{R}$ .
    - Exact critical region: We want a test of level  $\alpha$ , i.e. we want that

$$\sup_{\mu \le 1} \mathbb{P}_{\mu}(T \ge c) \le \alpha.$$

If  $\mu$  grows, the probability that T is large grows, hence  $\mathbb{P}_{\mu}(T \geq c)$  is an increasing function of  $\mu$ . It follows that the supremum is attained at  $\mu = 1$ , so the requirement reduces to

$$\mathbb{P}_1(T \ge c) \le \alpha.$$

But under  $\mathbb{P}_1$ , i.e. if  $\mu = 1$ , the statistic T has a standard normal distribution. It follows that the requirement is fulfilled if  $c \geq \xi_{1-\alpha}$ . But we want the critical region as large as possible, so we take  $c = \xi_{1-\alpha}$ .

• Final test: Reject  $H_0$  if  $T \geq \xi_{1-\alpha}$ .