
Statistics X 400004 Resit 26.03.18 Soluions

Exercise 1 [26 points (midterm retake); 18 points (full retake)]
Let X1, . . . , Xn be independent random variables with density

pθ(x) =


1

θ
e1−xθ , x ≥ θ,

0, x < θ,

where θ > 0 is an unknown parameter.
(a) [9 points] Give the moment estimator θ̂MM and the maximum likelihood estimator θ̂ML of the

parameter θ.
Hint 1: To derive θ̂MM, use without derivation the fact that Xi = Yi + θ, where the Yi’s are
independent and follow the Exponential(1/θ) distribution (see Appendix 1).

Hint 2: To derive θ̂ML, check where the (log-)likelihood function is increasing and keep in
mind that X(1) ≤ X.

By Hint 1 and Appendix 1, EX1 = EY1 + θ =
1

1/θ
+ θ = 2θ. We have θ =

1

2
EX1 and the

moment estimator is given by θ̂MM =
1

2
X.

The log-likelihood function is

lnL(θ) = ln

n∏
i=1

pθ(Xi) =

n∑
i=1

ln pθ(Xi) =

n∑
i=1

ln

(
1

θ
e1−Xi

θ

)

=

n∑
i=1

(− ln θ + 1− Xi

θ
) = n−n ln θ −

∑n
i=1Xi

θ︸ ︷︷ ︸
=: f(θ)

.

The data implies an additional restriction on the possible values of the parameter θ: since
Xi ∈ [θ,∞) for all i, we have θ ≤ X(1). The maximum likelihood estimator is given by

θ̂ML = argmaxθ≤X(1)
L(θ) = argmaxθ≤X(1)

lnL(θ) = argmaxθ≤X(1)
f(θ).

We have

f ′(θ) = −n
θ

+

∑n
i=1Xi

θ2
=

n

θ2
(−θ +X)


> 0, θ < X,

= 0, θ = X,

< 0, θ > X.

We have to maximize f(θ) over θ ≤ X(1). By the above, f(θ) is increasing on θ ≤ X, and
then Hint 2 implies that f(θ) is increasing on θ ≤ X(1). That is,

θ̂ML = argmaxθ≤X(1)
f(θ) = X(1).

(b) [8 points (midterm retake only)] Transform the estimators θ̂MM and θ̂ML that you found in

part (a) into unbiased estimators θ̂1 and θ̂2 of the parameter θ. (If θ̂MM is already unbiased,

just put θ̂1 = θ̂MM. If θ̂ML is already unbiased, just put θ̂2 = θ̂ML.)
Hint 3: In addition to Hint 1, note that X(1) = Y(1) + θ. To figure the distribution of Y(1),
use without derivation the fact that, for independent random variables Ei ∼ Exponential(λi),
i = 1, . . . , n, we have mini=1,...,nEi ∼ Exponential(

∑n
i=1 λi).

We have

Eθ̂MM =
1

2
EX =

1

2
EX1

(a)
=

1

2
· 2θ = θ.
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That is, θ̂MM is an unbiased estimator for θ and we put θ̂1 =
1

2
X.

By Hints 1 and 3, Y(1) = mini=1,...,n Yi ∼ Exponential(n/θ) and X(1) = Y(1) + θ. Then, by
Appendix 1,

Eθ̂ML = EX(1) = EY(1) + θ =
1

n/θ
+ θ = θ

n+ 1

n
.

That is, θ̂ML is biased. It can be transformed into an unbiased estimator by scaling: put

θ̂2 = θ̂ML
n

n+ 1
= X(1)

n

n+ 1
,

then

Eθ̂2 =
n

n+ 1
Eθ̂ML =

n

n+ 1
θ
n+ 1

n
= θ.

That is, θ̂2 = X(n)
n

n+ 1
is an unbiased estimator for θ.

(c) [9 points] Which of the unbiased estimators θ̂1 and θ̂2 that you found in part (b) is better for
large data sets? (That is, as n→∞. You do not have to specify for which n exactly one
estimator is better than the other). Use Hints 1, 3 and

Hint 4: If you have no answer to part (b), compare θ̂1 =
1

2
X and θ̂2 =

n

n+ 1
X(1) under the

assumption that these are unbiased estimators for θ.

Since θ̂1 is unbiased, we have

MSE(θ̂1) = Varθ̂1 =
1

4
VarX =

1

4
· VarX1

n

Hint 1
=

1

4n
Var(Y1 + θ)

=
1

4n
Var( Y1︸︷︷︸

∼Exponential(1/θ)

)
Appendix 1

=
1

4n

1

(1/θ)2
=
θ2

4n
.

Since θ̂2 is unbiased as well,

MSE(θ̂2) = Varθ̂2 =
n2

(n+ 1)2
VarX(1)

Hint 1
=

n2

(n+ 1)2
Var(Y(1) + θ) =

n2

(n+ 1)2
VarY(1),

where Y(1) ∼ Exponential(n/θ) by Hint 3, and hence, by Appendix 1,

MSE(θ̂2) =
n2

(n+ 1)2
VarY(1) =

n2

(n+ 1)2

1

(n/θ)2
=

θ2

(n+ 1)2
.

As n→∞, we have MSE(θ̂2) < MSE(θ̂1) because (n+ 1)2 grows faster than 4n. Hence, for

large data sets, the estimator θ̂2 is better than θ̂1.

Exercise 2 [8 points]
Let X1, . . . , Xn be independent random variables with the density

pθ(x) =

{
θxθ−1, 0 ≤ x ≤ 1,

0, x < 0, x > 1,

where θ > 0 is an unknown parameter. Give the Bayes estimator for θ under the Exponential(1)
prior belief about θ, i.e. the prior density is given by

π(θ) =

{
e−θ, θ > 0,

0, θ ≤ 0.
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Hint 5: The posterior parameter density is proportional to the product of the prior parameter
density and the likelihood function. The posterior distribution is a common distribution, see
Appendix 1.

The posterior density is proportional to

pΘ|X1,...,Xn
(θ) ∝ π(θ)

n∏
i=1

pθ(Xi) = e−θθn
n∏
i=1

(Xθ−1
i ) = e−θθn

(
n∏
i=1

Xi

)θ ( n∏
i=1

Xi

)−1

∝ e−θθn
(

n∏
i=1

Xi

)θ
= θneθ[−1+ln(

∏n
i=1Xi)], θ > 0.

We can match the posterior density to a Gamma density (see Appendix 1): n = α− 1 and
−1 + ln (

∏n
i=1Xi) = −λ. That is, Θ|X1, . . . , Xn ∼ Gamma(α, λ) with

α = n+ 1, λ = 1− ln

(
n∏
i=1

Xi

)
,

and the Bayes estimator for θ is

θ̂B = E[Θ|X1, . . . , Xn]
Appendix 1

=
α

λ
=

n+ 1

1− ln (
∏n
i=1Xi)

.

Exercise 3 [16 points (midterm retake only)]
A principal at a certain school suspects that the students in his school are of above average
intelligence. Average intelligence corresponds to an IQ score of 100. A random sample of 30
students have a mean IQ score of 112. Does this provide sufficient evidence to support the
principal’s belief? Assume that the IQ scores of the students of this particular school follow a
normal distribution with unknown mean µ and known standard deviation 15.
(a) [2 points] Formulate an appropriate statistical model and a null and alternative hypotheses.

IQ scores of different students are independent random variables X1, . . . , X30 ∼ N(µ, 152),
where the parameter µ is unknown.
We have to test H0 : µ ≤ 100 VS H1 : µ > 100.

(b) [7 points] Test the hypotheses from part (a) so that the maximum chance of a type-1 error is
5%. Report the test statistic, its distribution on the border of H0, the critical region, and the
conclusion.

The test statistic is
X − 100

15/
√

30
.

If µ = 100 (border of H0),
X − 100

15/
√

30
∼ N(0, 1).

The hypotheses should be tested at the significance level α0 = 0.05. We test as follows:

X − 100

15/
√

30
> Φ−1(1− α0)︸ ︷︷ ︸

critical region

⇒ reject H0,

X − 100

15/
√

30
≤ Φ−1(1− α0)⇒ fail to reject H0.

We observe
X − 100

15/
√

30
=

112− 100

15/
√

30
= 4.38 and Φ−1(1− α0) = Φ−1(0.95) = 1.645. That is, the

data are in the critical region (4.38 > 1.645) and we reject H0. There is enough evidence to
support the principal’s belief.
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(c) [7 points] How many students should be included in the sample to ensure that, in case the
true mean µ of the IQ scores of the school’s students is 110, the power of your test from (b)
is at least 95%?

If there are n students in the sample, we test as follows:

X − 100

15/
√
n

> Φ−1(1− α0) = 1.645︸ ︷︷ ︸
critical region

⇒ reject H0.

The power of this test when µ = 110 is

Pµ=110{reject H0} = Pµ=110{
X − 100

15/
√
n
≥ 1.645} = Pµ=110{

X − 110

15/
√
n
≥ 1.645− 10

15/
√
n
}}

= P{N(0, 1) ≥ 1.645− 2

3

√
n}.

We have the power Pµ=4100{reject H0} = P{N(0, 1) ≥ 1.645− 2

3

√
n} ≥ 0.95 if and only if

1.645− 2

3

√
n ≤ Φ−1(0.05) = −Φ−1(0.95) = −1.645, which is if and only if n ≥ 25.

Exercise 4 [12 points]
In a packing plant, a machine packs cartons with jars. It is supposed that a new machine will pack
faster on average than the machine currently used. To test that hypothesis, the times it takes each
machine to pack ten cartons are recorded: X1, . . . , X10 are the times of the new machine,
Y1, . . . , Y10 are the times of the old machine. The summaries of the observed times are X = 42.74,
SX = 0.683, Y = 43.23, SX = 0.75. Carry out a suitable test at significance level 0.05 to
investigate whether the data provide sufficient evidence to conclude that, on average, the new
machine packs faster. Report
(a) [3 points] the statistical model and the null and alternative hypotheses,

X1, . . . , X10 i.i.d. ∼ N(µ, σ2), Y1, . . . , Y10 i.i.d. ∼ N(ν, σ2), the two samples are independent
and have the same variance σ2.

The new machine packing faster means its packing time is lower (putting this in H1). So we
want to test H0 : µ ≥ ν VS H1 : µ < ν.

(b) [4 points] the test statistic and its distribution when the new and the old machines are
equally fast,
Hint 6: If X1, . . . , Xm ∼ N(µ, σ2) and Y1, . . . , Yn ∼ N(ν, τ2), all independent, then
(X − Y )− (µ− ν)√

σ2/m+ τ2/n
∼ N(0, 1) and is independent from

(m− 1)S2
X

σ2
+

(n− 1)S2
Y

τ2
, which has a

chi-square distribution.

We apply the hint to µ = ν and σ2 = τ2. We have
(m− 1)S2

X

σ2
+

(n− 1)S2
Y

σ2︸ ︷︷ ︸
bottom

∼ χ2
m+n−2 and is

independent from
X − Y√

σ2/m+ σ2/n︸ ︷︷ ︸
top

∼ N(0, 1). Hence
top√

bottom/(m+ n− 2)
∼ tm+n−2,
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where

top√
bottom/(m+ n− 2)

=
X − Y

σ
√

1/m+ 1/n
/

√
(m− 1)S2

X + (n− 1)S2
Y

σ2
· 1

m+ n− 2

=
X − Y√

1/m+ 1/n
/

√
(m− 1)S2

X + (n− 1)S2
Y

m+ n− 2
.

That is, the test statistic is T =
X − Y√

1/m+ 1/n
/

√
(m− 1)S2

X + (n− 1)S2
Y

m+ n− 2
and its

distribution under µ = ν is tm+n−2.

(c) [5 points] the critical region and the conclusion. At significance level α, we test as follows:

T < −tm+n−2,1−α︸ ︷︷ ︸
critical region

⇒ reject H0,

T ≥ −tm+n−2,1−α ⇒ fail to reject H0.

We have m = n = 10, α = 0.05,

T =
42.74− 43.23√

1/10 + 1/10
/

√
9 · 0.6832 + 9 · 0.752

18
= −1.53 and −tm+n−2,1−α = −t18,0.95 = −1.73.

Since T = −1.53 6< −tm+n−2 = −1.73, we fail to reject H0. That is, the data do not provide
enough evidence that the new machine packs faster.

Exercise 5 [15 points]
Let X1, . . . , X10 be independent random variables such that, for all i, X3

i ∼ Exponential(1/θ).
(a) [5 points] Give the definition of a pivot. Construct a pivot using (without derivation) the

following hints.
Hint 7: If a random variable E ∼ Exponential(λ), then λE ∼ Exponential(1).
Hint 8: If random variables E1, . . . , En are independent and follow the Exponential(1)
distribution, then 2

∑n
i=1Ei ∼ χ2

2n.

A pivot is a function of the data and the parameters of the statistical model whose
distribution does not depend on the unknown parameters of the statistical model.

By Hint 7,
1

θ
X3
i ∼ Exponential(1) for all i, and also these are independent random variables

(because the Xi’s are). Then Hint 8 (with n = 10) implies that

2

θ

20∑
i=1

X3
i ∼ χ2

20

is a pivot (the distribution of the left-hand side does not depend on the unknown parameter
θ, that is why it is a pivot).

(b) [5 points] Construct a confidence interval for θ of confidence level 0.9.

Using the pivot from (a), we have

P
{
χ2

20,0.05 ≤

pivot ∼ χ2
20︷ ︸︸ ︷

2

θ

20∑
i=1

X3
i ≤ χ2

20,0.95

}
= 0.9.
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which is equivalent to

P
{

2

χ2
20,0.95

20∑
i=1

X3
i ≤ θ ≤

2

χ2
20,0.05

20∑
i=1

X3
i︸ ︷︷ ︸

CI for θ of level 0.9

}
= 0.9.

(c) [5 points] It has been observed that X3 = 1.6. Use (b) to test at significance level 0.1
whether θ deviates from 2.

We have to test H0 : θ = 2 VS H1 : θ 6= 2. The CI from (b) is of confidence level 0.9. We will
use the test

2 /∈ the CI ⇒ reject H0

2 ∈ the CI ⇒ fail to reject H0,

which has significance level 1-0.9=0.1.

We have

10∑
i=1

X3
i = 10X3 = 16, χ2

20,0.95 = 31.41, χ2
20,0.05 = 10.85, and hence the confidence

interval is [
2

31.41
· 16,

2

10.85
· 16

]
= [1.02, 2.95].

Since 2 ∈ [1.02, 2.95], we fail to reject H0 : θ = 2.

Exercise 6 [23 points (final retake); 17 points (full retake)]
Let X1, . . . , Xn be independent random variables from the Γ(3, 1/θ) distribution (see Appendix 1),
where θ > 0 is an unknown parameter.
(a) [8 points] The maximum likelihood estimator for θ is λ̂ML = X/3. Compute the Wald

confidence interval θ = λ̂ML ±
1√
nîθ

Φ−1(1− α/2). What estimator for the Fisher

information iθ (see Appendix 2) do you use? What is the confidence level of this confidence
interval, and is it the exact or an approximate confidence level?

First we compute the Fisher information:

pθ(x)
Appendix 1

=
1

Γ(3)θ3
x2e−x/θ,

ln pθ(x) = − ln Γ(3)− 3 ln θ + 2 lnx− x

θ
,

˙̀(x) =
∂`

∂θ
ln pθ(x) = −3

θ
+

x

θ2
,

and hence,

iθ = Varθ ˙̀(X1) = Varθ

(
−3

θ
+
X1

θ2

)
= Var

(
X1

θ2

)
=

1

θ4
Var X1︸︷︷︸

∼Γ(3,1/θ)

Appendix 1
=

1

θ4
· 3

(1/θ2)
=

3

θ2
.

We use the plug-in estimator for the Fisher information

îθ = iθ̂ML
= iX/3 =

27

(X)2
,

and get the Wald confidence interval

θ =
X

3
± X

3
√

3n
Φ−1(1− α/2).

The confidence level of this confidence interval is approximately 1− α.
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(b) [6 points (final retake only)] Does the Cramer-Rao lower bound (see Appendix 1) imply that
X/3 is a UMVU estimator for θ?

The estimator X/3 is unbiased estimator for θ:

E
X

3
=

1

3
EX1

Appendix 1
=

1

3
· 3

1/θ
= θ.

The LHS in the Cramer-Rao lower bound is

Var
X

3
=

VarX1

9n

Appendix 1
=

1

9n
· 3

(1/θ2)
=
θ2

3n
,

and the RHS in the Cramer-Rao lower bound is

1

niθ

(a)
=

1

n · 3/θ2
=
θ2

3n
.

We have

Varθ
X

3
=

1

niθ
=
θ2

3n
,

i.e. the Cramer-Rao lower bound is sharp on the estimator X/3, which is unbiased for θ.
Hence, is does follow that X/3 is a UMVU estimator for θ.

(c) [9 points] Show that X is a sufficient and complete statistic (see Appendix 2). The estimator

3n

3n+ 1

(
X

3

)2

is unbiased for θ2 (do not prove the unbiasedness), is this a UMVU estimator

for θ2?

Since

pθ(~x) =

n∏
i=1

pθ(xi) =

n∏
i=1

x2
i

Γ(3)θ3
e−xi/θ

=
1

(Γ(3))nθ3n︸ ︷︷ ︸
c(θ)

·
n∏
i=1

x2
i︸ ︷︷ ︸

h(~x)

· exp

(
−1

θ︸︷︷︸
Q1(θ)

·
n∑
i=1

Xi︸ ︷︷ ︸
V1(~x)

)
,

the joint data distributions forms a 1-dimensional exponential family and the statistic∑n
i=1Xi is sufficient.

Since the set {Q1(θ) : θ > 0} = (−∞, 0) does have interior points in R1, the statistic
∑n
i=1Xi

is also complete.

Then the statistic X is sufficient and complete as well because X =
∑n
i=1Xi/n is a 1-to-1

correspondence.

The given estimator is a function of the sufficient and complete (as shown in (c)) statistic X
and it is an unbiased estimator for θ2. Hence, it is UMVU.
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Appendix 1: Some relevant distributions

Exponential(λ), λ > 0

The density is given by

{
λe−λt, t > 0,

0, t ≤ 0.

The expectation is
1

λ
, the variance is

1

λ2
.

Gamma(α,λ) distribution, α > 0, λ > 0

The density is given by


λα

Γ(α)
tα−1e−λt, t > 0,

0, t ≤ 0,
where Γ(α) is the normalizing constant.

The expectation is
α

λ
, the variance is

α

λ2
.

Appendix 4: Some facts from optimality theory

Fisher information Let X1, . . . , Xn be i.i.d. with marginal p.d.f./p.m.f. pθ(x) and

˙̀
θ(x) :=

∂

∂θ
ln pθ(x), ῭

θ(x) :=
∂2

∂θ2
ln pθ(x). Then the Fisher information is given by

iθ := Var ˙̀
θ(X1) = −E ῭

θ(X1).

Cramer-Rao lower bound Let X1, . . . , Xn be i.i.d. random variables from a distribution
parametrized by θ. Under certain conditions, every unbiased estimator θ̂ for θ satisfies

Var θ̂ ≥ 1

niθ
.

Exponential family of p.d.f./p.m.f.’s on Rn:

pθ(~x) = c(θ)h(~x) exp

 k∑
j=1

Qj(θ)Vj(~x)

 ,

where ~x = (x1, . . . , xn).

8



Appendix 2: Table normal distribution

0 1 2 3 4 5 6 7 8 9
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999

Table 1: Distribution function of the standard normal distribution on the interval [0, 4]. The value
in the table is Φ(x) for x = a+ b/100 where a indicates the row and b indicates the column.

Appendix 5: Table t-distribution

df 0.6 0.7 0.75 0.8 0.85 0.9 0.925 0.95 0.975 0.98 0.99 0.999
9 0.26 0.54 0.7 0.88 1.1 1.38 1.57 1.83 2.26 2.4 2.82 4.3
10 0.26 0.54 0.7 0.88 1.09 1.37 1.56 1.81 2.23 2.36 2.76 4.14
11 0.26 0.54 0.7 0.88 1.09 1.36 1.55 1.8 2.2 2.33 2.72 4.02
12 0.26 0.54 0.7 0.87 1.08 1.36 1.54 1.78 2.18 2.3 2.68 3.93
13 0.26 0.54 0.69 0.87 1.08 1.35 1.53 1.77 2.16 2.28 2.65 3.85
14 0.26 0.54 0.69 0.87 1.08 1.35 1.52 1.76 2.14 2.26 2.62 3.79
15 0.26 0.54 0.69 0.87 1.07 1.34 1.52 1.75 2.13 2.25 2.6 3.73
16 0.26 0.54 0.69 0.86 1.07 1.34 1.51 1.75 2.12 2.24 2.58 3.69
17 0.26 0.53 0.69 0.86 1.07 1.33 1.51 1.74 2.11 2.22 2.57 3.65
18 0.26 0.53 0.69 0.86 1.07 1.33 1.5 1.73 2.1 2.21 2.55 3.61
19 0.26 0.53 0.69 0.86 1.07 1.33 1.5 1.73 2.09 2.2 2.54 3.58
20 0.26 0.53 0.69 0.86 1.06 1.33 1.5 1.72 2.09 2.2 2.53 3.55
21 0.26 0.53 0.69 0.86 1.06 1.32 1.49 1.72 2.08 2.19 2.52 3.53
22 0.26 0.53 0.69 0.86 1.06 1.32 1.49 1.72 2.07 2.18 2.51 3.5
23 0.26 0.53 0.69 0.86 1.06 1.32 1.49 1.71 2.07 2.18 2.5 3.48
24 0.26 0.53 0.68 0.86 1.06 1.32 1.49 1.71 2.06 2.17 2.49 3.47
25 0.26 0.53 0.68 0.86 1.06 1.32 1.49 1.71 2.06 2.17 2.49 3.45
26 0.26 0.53 0.68 0.86 1.06 1.31 1.48 1.71 2.06 2.16 2.48 3.43
27 0.26 0.53 0.68 0.86 1.06 1.31 1.48 1.7 2.05 2.16 2.47 3.42
28 0.26 0.53 0.68 0.85 1.06 1.31 1.48 1.7 2.05 2.15 2.47 3.41

Table 2: Quantiles (columns) of the t-distribution with 9 to 28 degrees of freedom (rows).
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Appendix 3: Table Chi-square distribution

df 0.001 0.005 0.01 0.025 0.05 0.1 0.125 0.2 0.25 0.333 0.5
6 0.381 0.676 0.872 1.237 1.635 2.204 2.441 3.070 3.455 4.074 5.348
7 0.598 0.989 1.239 1.690 2.167 2.833 3.106 3.822 4.255 4.945 6.346
8 0.857 1.344 1.646 2.180 2.733 3.490 3.797 4.594 5.071 5.826 7.344
9 1.152 1.735 2.088 2.700 3.325 4.168 4.507 5.380 5.899 6.716 8.343
10 1.479 2.156 2.558 3.247 3.940 4.865 5.234 6.179 6.737 7.612 9.342
11 1.834 2.603 3.053 3.816 4.575 5.578 5.975 6.989 7.584 8.514 10.341
12 2.214 3.074 3.571 4.404 5.226 6.304 6.729 7.807 8.438 9.420 11.340
13 2.617 3.565 4.107 5.009 5.892 7.042 7.493 8.634 9.299 10.331 12.340
14 3.041 4.075 4.660 5.629 6.571 7.790 8.266 9.467 10.165 11.245 13.339
15 3.483 4.601 5.229 6.262 7.261 8.547 9.048 10.307 11.037 12.163 14.339
16 3.942 5.142 5.812 6.908 7.962 9.312 9.837 11.152 11.912 13.083 15.338
17 4.416 5.697 6.408 7.564 8.672 10.085 10.633 12.002 12.792 14.006 16.338
18 4.905 6.265 7.015 8.231 9.390 10.865 11.435 12.857 13.675 14.931 17.338
19 5.407 6.844 7.633 8.907 10.117 11.651 12.242 13.716 14.562 15.859 18.338
20 5.921 7.434 8.260 9.591 10.851 12.443 13.055 14.578 15.452 16.788 19.337
21 6.447 8.034 8.897 10.283 11.591 13.240 13.873 15.445 16.344 17.720 20.337
22 6.983 8.643 9.542 10.982 12.338 14.041 14.695 16.314 17.240 18.653 21.337
23 7.529 9.260 10.196 11.689 13.091 14.848 15.521 17.187 18.137 19.587 22.337
24 8.085 9.886 10.856 12.401 13.848 15.659 16.351 18.062 19.037 20.523 23.337
25 8.649 10.520 11.524 13.120 14.611 16.473 17.184 18.940 19.939 21.461 24.337

df 0.6 0.667 0.75 0.8 0.87 0.9 0.95 0.975 0.99 0.995 0.999
6 6.211 6.867 7.841 8.558 9.992 10.645 12.592 14.449 16.812 18.548 22.458
7 7.283 7.992 9.037 9.803 11.326 12.017 14.067 16.013 18.475 20.278 24.322
8 8.351 9.107 10.219 11.030 12.636 13.362 15.507 17.535 20.090 21.955 26.125
9 9.414 10.215 11.389 12.242 13.926 14.684 16.919 19.023 21.666 23.589 27.877
10 10.473 11.317 12.549 13.442 15.198 15.987 18.307 20.483 23.209 25.188 29.588
11 11.530 12.414 13.701 14.631 16.457 17.275 19.675 21.920 24.725 26.757 31.264
12 12.584 13.506 14.845 15.812 17.703 18.549 21.026 23.337 26.217 28.300 32.910
13 13.636 14.595 15.984 16.985 18.939 19.812 22.362 24.736 27.688 29.819 34.528
14 14.685 15.680 17.117 18.151 20.166 21.064 23.685 26.119 29.141 31.319 36.123
15 15.733 16.761 18.245 19.311 21.384 22.307 24.996 27.488 30.578 32.801 37.697
16 16.780 17.840 19.369 20.465 22.595 23.542 26.296 28.845 32.000 34.267 39.252
17 17.824 18.917 20.489 21.615 23.799 24.769 27.587 30.191 33.409 35.718 40.790
18 18.868 19.991 21.605 22.760 24.997 25.989 28.869 31.526 34.805 37.156 42.312
19 19.910 21.063 22.718 23.900 26.189 27.204 30.144 32.852 36.191 38.582 43.820
20 20.951 22.133 23.828 25.038 27.376 28.412 31.410 34.170 37.566 39.997 45.315
21 21.991 23.201 24.935 26.171 28.559 29.615 32.671 35.479 38.932 41.401 46.797
22 23.031 24.268 26.039 27.301 29.737 30.813 33.924 36.781 40.289 42.796 48.268
23 24.069 25.333 27.141 28.429 30.911 32.007 35.172 38.076 41.638 44.181 49.728
24 25.106 26.397 28.241 29.553 32.081 33.196 36.415 39.364 42.980 45.559 51.179
25 26.143 27.459 29.339 30.675 33.247 34.382 37.652 40.646 44.314 46.928 52.620

Table 3: Quantiles (columns) of the chi-square distribution with 6 to 25 degrees of freedom (rows).
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