
Answer to question 1
Answer to question 1a (1 1

2 points for each subquestion).
The distribution function is (using the density from the Appendix):

Fµ,σ(x) =

∫ x

0
(2πσ2y2)−1/2 exp{−[log(y)− µ]2/(2σ2)}dy =

∫ x

0
(2πσ2y2)−1/2 exp{−[log(y)]2/(2σ2)}dy.

Apply the change-of-variables: z = σ−1 log(y). Thus, dz = σ−1y−1dy. Or, dy = σydz. This
changes the integration domain from (0, x) to (−∞,σ−1 log(x)). Put together:

Fµ,σ(x) =

∫ x

0
(2πσ2y2)−1/2 exp{−[log(y)]2/(2σ2)}dy =

∫ σ−1 log(x)

−∞

(2πσ2y2)−1/2 exp(−z2/2)σ y dz

=

∫ σ−1 log(x)

−∞

(2π)−1/2 exp(−z2/2) dz = Φ0,1[σ
−1 log(x)].

This distribution function is continuous and monotone in x ( 12 point). Hence, the quantile function
is then the inverse of Fµ,σ(x):

α = Fµ,σ(xα)

⇔ α = Φ0,1[σ
−1 log(xα)]

⇔ Φ−1
0,1(α) = σ−1 log(xα)

⇔ exp[σΦ−1
0,1(α)] = xα.

Thus, the quantile function is F−1(α) = exp[σΦ−1
0,1(α)].

Answer to question 1b
The first order (population) moment of the lognormal distributed Xi (from the Appendix) is
E(X) = exp(µ2 + 1

2σ
2). The first order sample moment is the sample mean X̄ = 1

n

∑

i=1 Xi.
Equate the population and sample moment, solve for σ2 and obtain: σ̂2

MoM = 2 log(X̄).

Answer to question 1c
Denote the inverse gamma prior on σ2 by π(σ2). The Bayes estimator then is:

E(σ2|X1 = x1, . . . , Xn = xn) =

∫ ∞

0
σ2 π(σ2) P (X1 = x, . . . , Xn = xn |σ2)

∫∞

0 π(σ2) P (X1 = x, . . . , Xn = xn |σ2) dσ2
dσ2.

The denominator is:
∫ ∞

0
π(σ2) P (X1 = x, . . . , Xn = xn |σ2) dσ2

=

∫ ∞

0
π(σ2)

n
∏

i=1

Pσ2 (Xi = xi |σ2) dσ2

=

∫ ∞

0
βα[Γ(α)]−1(σ2)−α−1 exp(−β/σ2)

n
∏

i=1

(2πσ2x2
i )

−1/2 exp{−[log(xi)]
2/(2σ2)} dσ2

= βα[Γ(α)]−1
[

n
∏

i=1

(2πx2
i )

−1/2
]

∫ ∞

0
(σ2)−α−1−n/2 exp{−σ−2(β +

1

2

n
∑

i=1

[log(xi)]
2)} dσ2

= βα[Γ(α)]−1
[

n
∏

i=1

(2πx2
i )

−1/2
]{

β +
1

2

n
∑

i=1

[log(xi)]
2
}−α−n/2

Γ(α+ n/2)

×
∫ ∞

0

{

β +
1

2

n
∑

i=1

[log(xi)]
2
}α+n/2

[Γ(α+ n/2)]−1(σ2)−α−1−n/2 exp{−σ−2(β +
1

2

n
∑

i=1

[log(xi)]
2)} dσ2

= βα[Γ(α)]−1
[

n
∏

i=1

(2πx2
i )

−1/2
]{

β +
1

2

n
∑

i=1

[log(xi)]
2
}−α−n/2

Γ(α+ n/2),
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where in the last step the integral vanishes as the integrand is an inverse gamma density. By the
same token the numerator is:

∫ ∞

0
σ2 π(σ2)

n
∏

i=1

Pσ2(Xi = xi |σ2) dσ2

= βα[Γ(α)]−1
[

n
∏

i=1

(2πx2
i )

−1/2
]{

β +
1

2

n
∑

i=1

[log(xi)]
2
}−α−n/2+1

Γ(α+ n/2− 1).

The Bayes estimator is then given by division of the numerator by the denominator:

σ̂2
B =

{

β +
1

2

n
∑

i=1

[log(xi)]
2
}

Γ(α+ n/2− 1)[Γ(α+ n/2)]−1 =
{

β +
1

2

n
∑

i=1

[log(xi)]
2
}

(α+ n/2− 1)−1,

in which the property of the Gamma-function has been used.

Note: The argument above may be abbreviated, as the normalization constant does not affect the
shape of the posterior.

Answer to question 2
Answer to question 2a
Statistical model: Xi ∼ N (µ,σ2) and Yi ∼ N (ν,σ2) with unknown µ, ν ∈ R and unkown σ > 0.
Assumption (!): variances are equal. Hypothesis: H0 : µ = ν and Ha : µ ̸= ν.

Answer to question 2b
Remark 1: should a question 2a state a one-sided hypothesis, proceed one-sided.
Remark 2: One point for parts i), ii), iv), and two points for iii).
The test statistic is T = (X̄ − Ȳ )/(sx,y

√
n−1 +m−1), which (under H0) follows a tn+m−2

distribution. As s2x,y = (196.56 + 160.22)/16 = 22.24, sx,y = 4.72. The observed test statistic

T = t = (45.22− 41.56)/(4.72
√

1
9 + 1

9 ) = 1.65. On the other hand, the critical region is:

KT = (−∞, t16;0.025] ∪ [t16;0.975,∞) = (−∞,−2.12]∪ [2.12,∞). Thus, T ̸∈ KT and H0 is not
rejected.

Answer to question 2c
The power function of a test with test statistic T and rejection region KT is
θ *→ π(θ;KT ) = Pθ(T ∈ KT ). The power at a θ ∈ ΘHa

can be increased by increasing the sample
size: include more athletes! (One point for definition, one for sample size argument).

Answer to question 3
Answer to question 3a
First derive the maximum likelihood estimator (Three points). The likelihood, its logarithm and
the 1st and 2nd derivative of the latter are:

L(θ;X1, . . . , Xn) =
n
∏

i=1

(2πθ)−1/2 exp[−x2
i /(2θ)],

log[L(θ;X1, . . . , Xn)] ∝ −n

2
log(θ) − 1

2θ

n
∑

i=1

x2
i ,

∂

∂θ
log[L(θ;X1, . . . , Xn)] ∝ − n

2θ
+

1

2θ2

n
∑

i=1

x2
i ,

∂2

∂θ2
log[L(θ;X1, . . . , Xn)] ∝ n

2θ2
− 1

θ3

n
∑

i=1

x2
i .
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Equating the derivate to zero and solving for θ yields: θ̂ML = 1
n

∑n
i=1 x

2
i . To verify this indeed

corresponds to the location of a maximum of the (log-)likelihood evaluate the 2nd order derivative
at θ̂ML, which is (indeed) smaller than zero.
The likelihood ratio statistic (Two points) is:

λn(X1, . . . , Xn) =
L(θ̂ML;X1, . . . , Xn)

L(1;X1, . . . , Xn)
=

∏n
i=1 (2πθ̂ML)−1/2 exp[−x2

i /(2θ̂ML)]
∏n

i=1 (2π)−1/2 exp(−x2
i /2)

.

= (θ̂ML)
−n/2 exp

(

− 1− θ̂ML

2θ̂ML

n
∑

i=1

x2
i

)

.

Answer to question 3b
From lecture theorem: 2 log[λn(X1, . . . , Xn)]! χ2

1 if n → ∞ as Θ = (0,∞) and {1} is an interior
point of Θ (i.e. the H0 restriction is not on the boundary). For testing H0 : θ = 1 vs. Ha : θ ̸= 1
the likelihood-ratio test rejects if 2 log[λn(X1, . . . , Xn)] ≥ χ2

1,1−α. The theorem on the
correspondence between tests and confidence intervals then yields the confidence interval for θ:

{θ : log[L(θ;X1, . . . , Xn)]− log[L(θ̂ML;X1, . . . , Xn)] ≥ − 1
2χ

2
1,1−α}.

Answer to question 3c
Let random variable X follow pθ. A pivot is a function (X, θ) *→ T (X, θ) such that the probability
distribution of T (X, θ) does not depend on θ or other unknown parameters. A pivotal quantity
T (X, θ) is used to construct an exact (!) confidence interval for θ. When a pivot does not exist, an
approximate confidence interval is constructed on the basis of an approximate pivot. For instance,
for large samples the distribution of the pivot may be approximated by its asymptotic distribution
(which ought not to depend on the unknown parameters). Hence, pivots yield exact confidence
intervals, whereas approximate pivots produce approximate confidence intervals. As the confidence
interval here is based on an asymptotic approximation: an approximate pivot.

Answer to question 4
Answer to question 4a
First show the density of the data (likelihood) belongs to the exponential family:

pθ(X1, . . . , Xn) =
n
∏

i=1

θ−1 exp(−xi/θ) = θ−n exp(−θ−1
n
∑

i=1

xi)

= c(θ) exp[Q1(θ)V1(X1, . . . , Xn)],

with Q1(θ) = −θ−1 and V1(X1, . . . , Xn) =
∑n

i=1 xi. As {−θ−1 : θ > 0} contains an interior point
in R, the statistic

∑n
i=1 xi is (by theorem from lecture) sufficient and complete.

Answer to question 4b
The maximum likelihood estimator θ̂ML = X is based on V1(X1, . . . , Xn) =

∑n
i=1 xi, which is

sufficient and complete. If θ̂ML is unbiased, then (by theorem from lecture) θ̂ML is a UMVU
estimator. Note: E(θ̂ML) = E(X) = E(X1) = θ. Thus, θ̂ML = X is a UMVU estimator.

Answer to question 4c
Given iθ = Vθ[ℓ̇θ(X1)] = −E[ℓ̈θ(X1)]. The likelihood is:

ℓθ(X1) = log[θ−1 exp(−X1/θ)] = − log(θ)−X1/θ.

Its gradient is then ℓ̇θ(X1) = −θ−1 +X1θ−2, while its second order derivative is
ℓ̈θ(X1) = θ−2 − 2X1θ−3. The Fisher information is then:

iθ = −E[ℓ̈θ(X1)] = −θ−2 + 2E(X1)θ
−3 = −θ−2 + 2θθ−3 = θ−2.
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Answer to question 4d
The variance of the ML-estimator is Vθ(X) = 1

nVθ(X1) = θ2/n (if exp(θ−1) exists). From the
lemma we have: θ−2 = V(−θ−1 +X1θ−2) = θ−4V(X1). Thus, V(X1) = θ2.

Answer to question 4e
Cramer-Rao tells us that Vθ(T ) ≥ (n iθ)−1 for unbiased estimators T of θ. Here the underbound is
(n iθ)−1 = θ2/n = V(X) = V(θ̂ML). Hence, the underbound is sharp.
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