
Answer to question 1
Answer to question 1a
The distribution function is (using the hints provided in the exercise):

Fθ(x) =

∫ x

−∞

{π[1 + (y − θ)2]}−1dy =

∫ x−θ

−∞

{π[1 + z2]}−1dz

= π−1[arctan(z)]x−θ
−∞ = π−1 arctan(x− θ) + 1

2 .

This distribution function is continuous and monotone in x. Hence, the quantile function is then
the inverse of Fθ(x):

α = Fθ(xα)

⇔ α = π−1 arctan(xα − θ) + 1
2

⇔ α− 1
2 = π−1 arctan(xα − θ)

⇔ π(α − 1
2 ) = arctan(xα − θ)

⇔ tan[π(α − 1
2 )] = xα − θ

⇔ θ + tan[π(α − 1
2 )] = xα.

Thus, the quantile function is F−1(α) = θ + tan[π(α− 1
2 )].

Answer to question 1b
The likelihood is:

L(X1 = 1, X2 = 0; θ) = {π[1 + (θ − 1)2]}−1{π[1 + θ2]}−1

Its logarithm is the log-likelihood:

L(X1 = 1, X2 = 0; θ) ∝ − log[1 + (θ − 1)2]− log[1 + θ2]

Arrive at the likelihood equation by equating the derivate of the log-likelihood w.r.t. θ to zero:

0 = − 2(θ − 1)

1 + (θ − 1)2
− 2θ

1 + θ2

This equals zero when:

0 = −(θ − 1)[1 + θ2]− θ[1 + (θ − 1)2].

This factorizes to:

0 = (2θ − 1)(θ2 − θ + 1).

Hence, θ̂ML = 1
2 as the second factor yields imaginary roots (verify by the abc-formula).

It remains to verify that the ML estimate indeed maximizes the likelihood. The second order
derivative of the log-likelihood with respect to θ is:

− 2

1 + (θ − 1)2
+

4(θ − 1)2

[1 + (θ − 1)2]
− 2

1 + θ2
+

4θ2

[1 + θ2]2
=

−2 + 2(θ − 1)2

[1 + (θ − 1)2]
+

−2 + 2θ2

[1 + θ2]2
.

Evaluate this derivative at θ = 1
2 and note it is negative, which implies the ML estimate indeed

maximizes the likelihood.

Note: To answer the exam exercise one need not find the factorization above. It suffices to verify
through substitution that θ = 1

2 is a zero of the likelihood estimating equation.

Answer to Exercise 2

4

lOMoARcPSD|2306213



Answer to Exercise 2a
The first order (population) moment of the Weibull distributed Xi is E(Xi) = λ1/kΓ[(k + 1)/k].
The first order sample moment is the sample mean X̄ = 1

n

∑

i=1 Xi. Equate the population and

sample moment, solve for p and obtain: λ̂MoM = {X̄/Γ[(k + 1)/k]}k.

Answer to Exercise 2b
Denote the inverse gamma prior on λ by πλ. The Bayes estimator then is:

E(p|X1 = x1, . . . , Xn = xn) =

∫ ∞

0
λ

π(λ) P (X1 = x, . . . , Xn = xn | λ̄ = λ)
∫∞

0 π(λ) P (X1 = x, . . . , Xn = xn | λ̄ = λ) dλ
dλ.

The denominator is:
∫ ∞

0
π(λ) P (X1 = x, . . . , Xn = xn | λ̄ = λ) dλ

=

∫ ∞

0
π(λ)

n
∏

i=1

Pλ,k(Xi = xi | λ̄ = λ) dλ

=

∫ ∞

0
βα[Γ(α)]−1λ−α−1 exp(−β/λ)

n
∏

i=1

kλ−1xk−1
i exp(−xk

i /λ) dλ

= βα[Γ(α)]−1kn
(

n
∏

i=1

xk−1
i

)

∫ ∞

0
λ−α−1−n exp

[

− λ−1
(

β +
n
∑

i=1

xk
i

)]

dλ

= βα[Γ(α)]−1kn
(

n
∏

i=1

xk−1
i

)(

β +
n
∑

i=1

xk
i

)−α−n
Γ(α+ n)

×
∫ ∞

0

(

β +
n
∑

i=1

xk
i

)α+n
[Γ(α+ n)]−1λ−α−1−n exp

[

− λ−1
(

β +
n
∑

i=1

xk
i

)]

dλ

= βα[Γ(α)]−1kn
(

n
∏

i=1

xk−1
i

)(

β +
n
∑

i=1

xk
i

)−α−n
Γ(α+ n),

where in the last step the integral vanishes as the integrand is an inverse gamma density. By the
same token the numerator is:

∫ ∞

0
λ π(λ)

n
∏

i=1

Pλ,k(Xi = xi | λ̄ = λ) dλ

= βα[Γ(α)]−1kn
(

n
∏

i=1

xk−1
i

)(

β +
n
∑

i=1

xk
i

)−α−n+1
Γ(α+ n− 1).

The Bayes estimator is then given by division of the numerator by the denominator:

λ̂B =
(

β +
n
∑

i=1

xk
i

)

Γ(α+ n− 1)[Γ(α+ n)]−1 =
(

β +
n
∑

i=1

xk
i

)

(α+ n− 1)−1.

in which the property of the Gamma-function has been used.

Note: The argument above may be abbreviated, as the normalization constant does not effect the
shape of the posterior.

Answer to Exercise 2c
In general, E(X2) = V(X) + [E(X)]2. Furthermore, the posterior distribution of λ is with shape
parameter α+ 2 and scale parameter β + kx̄ (given in the exercise). The expectation and variance
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of an inverse gamma distributed random variable are provided in the appendix. Hence,
E(X) = β+kx̄

α+1 and V(X) = β+kx̄
α(α+1)2 . Then:

E(λ2|X1 = x1, . . . , Xn = xn) = V(λ|X1 = x1, . . . , Xn = xn) + [E(λ|X1 = x1, . . . , Xn = xn)]
2

= β+kx̄
α(α+1)2 + (β+kx̄)2

(α+1)2 = β+kx̄+α(β+kx̄)2

α(α+1)2 .

Answer to Exercise 3
Answer to Exercise 3a
The statistical model is the Binomial distribution Bin(n, p) with n = 50 and p ∈ [0, 1], the
probability of liking Trump. The hypothesis H0 : p ≥ 1

4 vs. Ha : p < 1
4 .

Answer to Exercise 3b
The test statistic T = X the number of Trump dislikes. Then, T ∼H0

Bin(n, 1
4 ). The Binomial

distribution may be approximated by the normal: T ≈ N (14n,
3n
16 ) for np(1− p) > 5 (which is

satisfied here). The critical region at level α0 = 0.10 is K = {0, . . . , cα0
}. Now derive the critical

value cα0
from the 2nd convention (i.e. choose a test of level α0):

PH0
(T ∈ K) = P

p=
1
4
(T ≤ cα0

+ 1
2 ) = P

p=
1
4

⎛

⎝

T−
1
4n

√

3n
16

≤ cα0
+

1
2−

1
4n

√

3n
16

⎞

⎠

≈ Φ0,1

⎛

⎝

cα0
+

1
2−

1
4n

√

3n
16

⎞

⎠ = 0.10 = Φ0,1(−1.28),

in which the continuity correction has been applied. Apply Φ−1
0,1, obtain cα0

+ 1
2 −

1
4n = −1.28

√

3n
16 ,

and solve for cα0
: cα0

= 1
4n− 1

2 − 1.28
√

3n
16 . Substitute n to arrive at cα0

= 8.08. Hence,

K = {0, . . . , 8}. As we have observed 9 Trump likes, the null hypothesis is not rejected.

Answer to Exercise 3c
Evaluate the p-value:

p = P
p=

1
4
(T ≤ t) = P

p=
1
4
(T ≤ 9 + 1

2 ) ≈ Φ0,1

(

9
1
2−12

1
2

3.0612

)

= Φ(−0.9798) = 0.1636.

Answer to Exercise 3d
Subject to level α0 = 0.10, choose n such that π(0.2;K) ≥ 0.8. Evaluate the power at p = 1

5 :

π(0.2;K) = P
p=

1
5
(T ∈ K) = P

p=
1
5
(T ≤ cα0

) = P
p=

1
5
(T ≤ cα0

+ 1
2 )

= Pp=0.2

(

T−
1
5n

√

4n
25

≤ cα0
+

1
2−

1
5n

√

4n
25

)

= Φ0,1

(

cα0
+

1
2−

1
5n

√

4n
25

)

= 0.80 = Φ0,1(0.8416).

Apply Φ−1
0,1 and substitute cα0

= 1
4n− 1

2 − 1.28 1
4

√
n to obtain

1
4n− 1

2 − 1.28 1
4

√
n+ 1

2 − 1
5n = 2

5

√
n× 0.8416.

Simplified:

0 = 1
20n− 0.65664

√
n ⇐⇒ 20

√
n(
√
n− 13.1328) = 0.

Hence, n = 172.47.
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