VRIJE UNIVERSITEIT AMSTERDAM

Exam Statistical Models on 14-12-2009

You may only use a calculator. The answers to the exercises need to be unambiguous ('no double answers') and clearly, but preferably concisely (Ned: 'bondig'), motivated. Items of exercise 1 are awarded with max. 2 points. Items of exercises 2,3 and 4 are awarded with max. 3 points (max. 42 point in total). Exam score is $\min(10,(\text{total score})/4)$. Final mark is computed as denoted on the web site. All statistical tests are to be performed using $\alpha = 0.05$, unless stated otherwise. Critical values of the F-distribution are displayed at the end.

1. We study the yield (Ned: 'opbrengst') from a certain chemical process, depending on two input factors: mixing speed (S: 60, 70,80) and formulation (F: 1, 2). The data is displayed in the Table below.

	60	70	80
	189.7	185.1	189.0
1	188.6	179.4	193.0
	190.1	177.3	191.1
	165.1	161.7	163.3
2	165.9	159.8	166.6
	167.6	161.6	170.3

Moreover, we have the following sums of squares: SS(F) = 2253.44, SS(S) = 230.81, SS(F*S) = 18.58 and SSE = 71.87.

- (a) Formulate an appropriate model plus all assumptions and constraints.
- (b) Does yield depend on either speed or formulation?
- (c) Does their appear to be an interaction effect between the two factors?
- (d) Calculate estimates of the mean effects.
- (e) We could also have modeled Speed as a continuous variable in a linear regression setting. What are the advantages/disadvantages with respect to the model you formulated under a.?
- (f) Given the data, do think it is wise to use Speed as linear predictor, as suggested in the previous exercise?
- 2. Figure 1 shows two series of measurements. Series 1, displayed with a \circ , was obtained under colder circumstances than Series 2, displayed by \times . For each series the data can be described by a nonlinear model of the following type

$$Y_i = \theta_1 + \frac{\theta_2 x_i}{\theta_3 + x_i} + \varepsilon_i,$$

where $\varepsilon_1, \ldots, \varepsilon_{20}$ are independent measurement errors which are assumed to be normally distributed with mean 0 and variance σ^2 . The values of $\theta_1, \theta_2, \theta_3$ and σ^2 are unknown. It is suspected that the value of θ_2 is influenced by the temperature and that the other parameter values are insensitive to temperature.

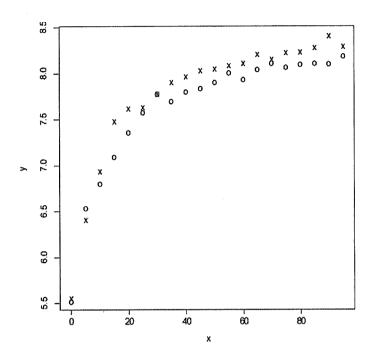


Figure 1: Two series of measurements (Series 1: \circ , Series 2: \times)

- (a) How is the least squares estimator $\hat{\theta}$ of $\theta = (\theta_1, \theta_2, \theta_3)^T$ defined?
- (b) Find suitable starting values for estimating $\theta = (\theta_1, \theta_2, \theta_3)^T$ for Series 1.
- (c) The table below lists the parameter estimations with their 95% confidence intervals for the two series. What do you conclude, based on these results, with respect to the suspicion about $\theta_1, \theta_2, \theta_3$ being (in)sensitive to temperature?

	Series 1		Series 2	
	estimate	interval	estimate	interval
$\overline{\theta_1}$	5.54	(5.414, 5.657)	5.52	(5.383, 5.648)
$ heta_2$	2.94	(2.813, 3.068)	3.11	(2.967, 3.244)
θ_3^-	11.96	(10.016, 13.899)	10.96	(9.154, 12.762)

- (d) Describe how the null hypothesis that the values of θ_2 are equal for the two series, can be tested.
- 3. The negative binomial distribution describes the number of experiments k need before r successes are observed, where each experiment has success probability p. Here, r is supposed to be fixed. It generalizes the geometric distribution, for which r=1. The probability density function of the negative binomial distribution is

$$P(Y = y) = {y + r - 1 \choose r - 1} p^r (1 - p)^y.$$

(a) The general form of the exponential family is $f(y,\theta) = \exp(\frac{y\theta - b(\theta)}{\phi/A} + c(y,\phi/A))$. Show that the negative binomial distribution belongs to the exponential family.

- (b) Show that the mean E[Y] = rp/(1-p).
- (c) Suppose we have covariates to model the linear predictor (η) . Describe the steps for estimating the unknown parameters in the linear predictor.
- 4. Consider the following ARMA(1,1) process.

$$X_t = \alpha X_{t-1} + \beta Z_{t-1} + Z_t$$

where $Z_i \sim N(0, \sigma^2)$.

- (a) We assume a stationary series. What does this mean?
- (b) Estimate α and β using the Yule-Walker equations and the following estimates of the autocorrelations. $\hat{\gamma}_X(1) = 0.7, \hat{\gamma}_X(2) = -0.3$.
- (c) Now suppose there is a trend and seasonality present in the data. Discuss the small trend method and explain how to use it for removing those structural components.

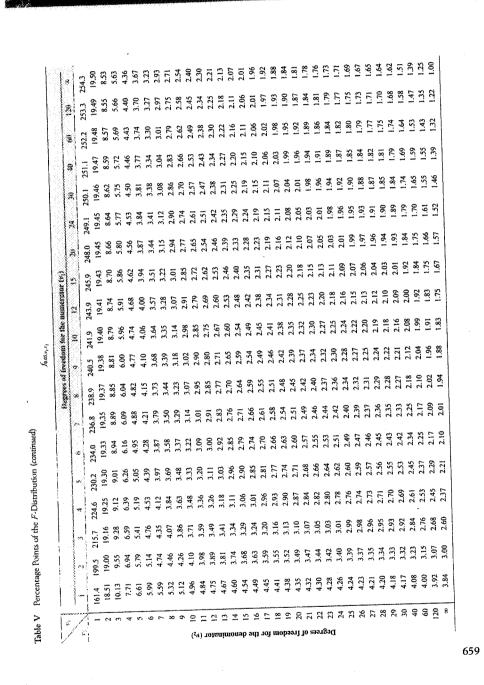


Figure 2: Right-critical values at $\alpha=0.05$ for the F_{ν_1,ν_2} distributions