Chapter 1

Introduction
What is statistics?

Statistics is the science of collecting, analyzing and interpreting data

The stages of a statistical study:
e Research question
e Experimental design
¢ Data collection
e Data analysis
® [nterpretation of results
® Presentation of results and conclusions

Aim of this course
Give theoretical and practical insight in the last 3 stages.

Course overview

In each statistical study we need a statistical model.

Data analysis
e get animpression of data
¢ validate statistical model
e summarize data (descriptive statistics)
e analyze (e.g. estimate/test parameters in model)

Interpretation of results
e this is not always straightforward...

Presentation of results and conclusions
¢ translate back to the experimental context

Course overview

For the data analysis we discuss:

e Summarizing data (Chapter 2)

e Exploring distributions (Chapter 3)

e Bootstrap methods (Chapter 4)

e Robust estimators (Chapter 5)
Relatively insensitive to small deviations from the assumptions

e Nonparametric tests (Chapter 6)

e Analysis categorical data (Chapter 7)

e Multiple linear regression  (Chapter 8)

Interpretation and presentation of results and conclusions are practiced in the assignments.



Chapter 2
Summarizing data

2.1 Data

Data: quantified measurements of a study.
Data is typically stored in variables.
Variable: a property of an individual/object that can be measured

Variables can be
® measured on different scales,
e univariate, bivariate or multivariate,
e dependent or independent.

Measurement scales of variables

Qualitative variable
e nominal (e.g. gender)
Location measures like median or mean and spread measures have no meaning.
e ordinal (e.g. level of education)
The categories can be ordered, without measurable distances.
The median and the mode can be useful, but the mean and spread measures have no
meaning.

Nominal and ordinal variables are discrete by definition.

Quantitative variable
discrete
e interval (e.g. date)
* ratio (e.g. counts)
continuous
e interval (e.g. temperature in Celsius)
e ratio (e.g. duration of this lecture, temperature in Kelvin)

For quantitative variables the location measures (mean, mode and median) and the spread
measures can all be used.

For interval scales only intervals are meaningful, ratios are not. Differences are meaningful.

For ratio scales both intervals and ratios are meaningful. There is a zero.

Number of characteristics measured in one variable




e univariate (e.g. gender)
e bivariate (e.g. gender and level of education)
e multivariate (e.g. gender, level of education, shoe size, age, height)

Role of the variables

e dependent: variable of interest
¢ independent: variables containing background information

Example 2.2 In a study about the dependence of political opinions on variables like age, sex,
or religion, the political opinion is the dependent variable and answers to a question about
political opinion are the values of the dependent variable. Age, sex, religion, and so on, are
the independent variables.

2.2 Summarizing data

A good summary shows at least
e J|ocation, scale
®* range, extremes
¢ holes, modes
* symmetry

Additionally it may answer the following questions
e are datarounded?
e are data from a known distribution?
¢ do we need to divide the data into groups?
¢ isthere influence of other variables, like time?
e what is the relation between variables?

2.2.1 Summarizing Univariate Data

Graphical summaries
e histogram
Too few or too many bin intervals gives a bad result. Sometimes it’s better to choose a
histogram with less bin intervals, although more data information gets lost. It gives a
better impression of the global spread of the data.

¢ stem-and-leaf-plot



With stem-and-leaf plots little information about the data gets lost. Stem-and-leaf plots
give an impression about the shape of the data distribution while retaining most of the

numerical information.
e empirical distribution function

The empirical distribution function is defined as
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combination of a graphical and a numerical summary (it also contains numerical info like

quartiles, interquartile range, median)

Numerical summaries

sample size
location mean
median
scale variance
standard deviation
coefficient of variation
range
quartiles
interquartile range
skewness skewness
size of tails curtosis
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mode:

the location of the maximum of the probability density of the distribution.

The skewness and the curtosis give an idea of the asymmetry and the size of the tails,

respectively, of the distribution.

Univariate Summaries Example

Example data incomes of 100 white families and 100 colored families in US.

white | 148 202 540

541 102,909

color 129 237 288

294 49,185

Two univariate data sets (not one bivariate data set).




Numerical summaries

white families

sample size
mean
median

sd

var

min

max

IQR

100

19,868
15,614
18,824
354,344,281
148

102,909
22,814

Graphical summaries

incomes white families

e -
™
§ o 1|
~
g
'S
e 4
o | ——
I 1 1 I 1 I
0 20000 60000 100000
income
boxplots for white and color
$ - §
o o
2
@©
- o
]
S
& :
3 ' 8
3 : 8
- ' ——
! L]
2
I
Q
~
z T 1
white color

colored families

sample size 100
mean 11,670
median 8,372
sd 10,811
var 116,884,650
min 129
max 49,180
IQR 13,421
incomes colored families
o -
P
§ 2
°r I 1 I I 1 |
0 10000 20000 30000 40000 50000
income
Empirical Distribution
functions
g -
. e white
'.;' - w— color
g = ] Ll ] 1 1 1
0e+00 2e+04 de+04 Ge+D4 Be+04 1e+05

income



2.2.2 Summarizing Bivariate Data

Graphical summaries
e scatter plot
scatter plots are used to plot the values of one quantitative variable against the
corresponding values of the other quantitative variable. They can help us to detect
relationships between the variables, like linear or quadratic relations, to find extreme
values, or to determine clusters of observations.
¢ time plot
the time plot is a scatter plot of the data against time
e contingency table

blood group | stomach uleer stomach cancer control | total
O 983 383 2892 | 4258

A 679 416 2625 | 3720

B 134 84 570 788

total 1796 883 6087 | 8766

Table 2.3: 3 x 3 contingency table of blood group against disease of 8766 persons.

Whereas in a scatter plot the individual data values can still be recognized, in a contingency
table this information may get lost (when the categories consist of more than one value). The
advantage of contingency tables is that they can be used not only to summarize data that are
measured on a quantitative scale, but also to summarize data that are measured on a
nominal or ordinal scale.

Numerical summaries
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The sample correlation coefficient 1,

relationship between x and y . It can take values from -1 to 1. A -value close



to-1 means that there is a strong negative linear relation between x and y. Equality to -1 or 1
means that the relationship is exactly linear.

Bivariate Summaries Example

Example data number of deaths due to lung diseases in the UK between 1974 and 1979,
registered monthly
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2.2.3 Summarizing Multivariate Data

Graphical summaries
e scatter plot
e contingency tables

For a multivariate data set it is often useful to make scatter plots or contingency tables for all
(relevant) pairs of variables. With 7 variables this yields already 21 graphs to study.
Moreover, it can be misleading to project higher-dimensional data into two dimensions.

Multivariate Summaries Examples

Example: Chernoff faces display multivariate data in the ' : :
e ¥
shape of a human face. 7 @

Chernoff faces handle each variable differently: the ’ @ . ,@

individual parts, such as eyes, ears, mouth and nose

represent values of the variables by their shape, size,
° ! e variables by thelr sha ‘@ %5 C

placement and orientation.

Idea humans easily recognize faces and notice small '
changes without difficulty. 0'0 Q?F | i




Chapter 3
Exploring distributions

In order to explore distributions we will discuss
¢ Quantile function
e |ocation-scale family
¢ QQ-plots and symplots

Distribution functions

Let us focus on a certain (real-valued) random variable X , e.g. body weight of a random
individual in this lecture room.

The population distribution function F is the underlying distribution of the variable in the
population. That is, F(x) is the probability that X isn’t greaterthan x€R inthis
population.

The empirical distribution function 13,l is the distribution of the variable in the sample
Xyseees X
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When generating a sample from a given distribution, the empirical distribution 1:“,, will
vary around the population distribution F . The larger the sample, the smaller this
variation.

Empirical and population distribution function of a sample with underlying distribution
N(0,1)
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The empirical distribution helps to determine the underlying (population) distribution.
This underlying distribution is usually part of a (parametric) statistical model. Hence, the
empirical distribution helps to check or set up a statistical model.

Goal: find underlying distribution

Type of questions that we deal with in this chapter:

One sample data
e Do data originate from a specific distribution? (QQ-plot, goodness-of-fit tests)
e |s the underlying distribution symmetric? (symplot)

Two sample data
¢ Do both data sets originate from same distribution? (QQ-plot)

3.1 The quantile function and location-scale families

Quantile functions

If for agiven a€(0,1) there exists exactlyone X,€R suchthat F|(x,/J=a | then
X, iscalledthe a -quantileofF.The a -quantileisdenotedby F'(a). Asthis

notation suggests, the quantile function is the function « HF‘l(a), the inverse of F, if
this inverse is well-defined. This is the case when F is a strictly increasing function.

XCl

Apart from strictly increasing pieces, a cumulative distribution function can have jumps as
well as constant pieces. Therefore, for fixed o« the equation F(x)za has exactly one,
none or infinitely many solutions. In order to be able to define the «a -quantile in the latter
two cases, the quantile function of F is in general defined by

Definition F '(a)=inf{x:F(x)>a],a €(0,1).

08
o

R: gnorm, gexp, gpois etc.

Location-scale family

If arandom variable X hasdistribution F ,then the distributionof Y=a+bX s
Fa,b ’

a€R,b>0 ,given by



X—da

F,,[x|=F -

The collection of distributions {Fa,b:a €R,b>0} s called the location-scale family

correspondingto F .
If EX=0 and varX=1 then EY=a and vary=b> .

Quantiles of F and Fa,b

Claim There is a linear relation between F'(a) and F,}(a)
F.4lal=a+bF ' (a)

Proof (for invertible F )

_ F;l(a]—a
a:Fa,b(Fa,lb(a))_F )bb
F'la)—al|| F.\lal—a
F—l :F—l F a,b — a,b
al b b
-1

Because F,,lal=a+bF '(a) ,thepoints ((F'la),F,}lal):a€(0,1)}

straight line y=a+bx.

N(0,1) and N(1,4) areinthe same location-scale
family.

Quantiles of N(1,4)
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N(0,1) and Cauchy(1) are notin the same
location-scale family. Cauchy distributions have heavier
tails.

3.2 QQ-plots

For independent random variables X,,..., X, with (continuous) distribution F ,we

i - i
have EF(X(,)):E .So X(l)zF 1(m)




If Y,,...Y, with Y,=a+bX, havedistribution F,, ,wehave EF,, Y‘.‘)ZL

i) n+1
So Y, =F,, . :a+bF71(—i ) . Hence, the points
Uom e nel n+1 ’
F'l——|,y.|:i=1,...,n
n+1 y(,))

are approximately on the straight line y=a+bx

In practice F is unknown. A QQ-plot is a plot of these points for some chosen distribution
F

R: ggnorm, qgexp, qqunif, etc.

A QQ-plot yields a method to judge whether the data come from a certain distribution by
only looking at the plot. When the plot yields approximately the line y=x , thisis an
indication that the data come from the distribution F . Deviations from the line y=x
indicate differences between the true distribution of the dataand F . The kind of
deviation from y=x suggests the kind of difference between the true distribution and

F . The simplest case of such a deviation is when the QQ-plot is a straight line but not the
line y=x ,asinFigure 3.3. This is an indication that the data do not originate from F ,
but come from another member of the location-scale family of F . Interpreting a bent
curve is more complicated. Such QQ-plots mainly yield information about the relative
thickness of the tails of the distribution of the data with respect to those of F

Example QQ-plot

Example QQ-plot of X,,...,X, N(u,0°) against N(0,1) forvarying n,u and ¢

N(0,1) sample with n=10 N(0,1) sample with n=100 N(1,4) sample with n=100
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w
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Frequency

0 2 4 6 8 10

Using QQ-plots

® plot a histogram
¢ plot different QQ-plots and choose the most linear one

Sorted Data
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e determine location (a) and scale (b)
0 by visually fitting a straight line y=a+bx
0 by fitting sample mean and variance to theoretical values

Example
* y=0+2x
e  X=198 , var(X)=42

exp(1/2) s a suitable distribution for this sample.

3.3 Symplots

The symmetry plot is used to investigate symmetry or skewness of a distribution.

Arandom variable X is symmetrically distributed around 6 if X—0 and 6—X
follow the same distribution.

To judge whether or not a sample originates from a symmetric distribution, a histogram or a
stem-and-leaf plot can be used. Naturally, the skewness parameter gives information about
symmetry too, although in spite of its name one should not overestimate its usefulness. Also
a large difference between mean and median indicates a skewed distribution.

Skewness can also be assessed with the quantile function.
If F issymmetricaround 6 ,we have
F'(1-a)-0=0—F '(a),a€(0,1).
Hence, the points ((#—F '(a),F '(1—a)—0):a €(0,1)} lie on the straight line y=x

For data from a symmetric distribution we expect that the

(med(:x]—xm,x‘

\l’l—i+1“

—med[x)):i=1,...,[gj.

also lie on the straight line y=x . A plot of these points is called a symmetry plot or,
briefly, a symplot.

R: symplot

Example symplot




As in the case of QQ-plots, sample size matters!
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First is symmetrical, second and third clearly have skewed distributions since they don’t
follow the line y=x

Systematic search for underlying distribution

® |nvestigate symmetry with symmetry plot (and histogram)
* Try several QQ-plots

0 If symmetric:
normal
less heavy tails, heavier tails
uniform logistic
doubly exponential (Laplace)
Cauchy
0 If not symmetric:

exponential = x,2

heavier left tail

X‘I

heavier right tail

X, lognormal

k>2

¢ [f not satisfactory, try transformations

3.4 Two-sample QQ-plots

Two sample QQ-plots (also called an empirical QQ-plot) are used to investigate whether two
samples X;,...,X,, and Y;,..,Y, originate from the same distribution, or from
distributions in the same location-scale family.

If m=n ,then this empirical QQ-plot is a plot of the points {(x,y):i=12,...,n}.

If m<n ,itis a plot of the points {(x(i),yfi)):i:1,2,...,m} , where



. n+1

.n+
i n 1+ m
m+1

m+l m+1

2™

I

Theidea is just to match  X; with Y(; for which

~_J
m+1 n+1

The reasoning is similar to one-sample QQ-plots: roughly a straight line indicates that it is
plausible to assume that the two samples are from distributions in the same location-scale
family.

R: ggplot

3.5 Goodness of fit tests
Idea: Assume we consider a sample X;,...,X, from an unknown distribution F .

Another (more formal) way to check whether this data comes from a ‘known’ distribution is a
goodness of fit test. With these tests, the null hypothesis that the data comes from a certain
distribution F , or from a member of a certain family of distributions, can be tested
against the alternative hypothesis that this is not the case:

H,.FEF,
H,:F¢F,

where either F, ={ F, }(simple H, )or F, isasmallcollection of distributions
(composite H, ), e.g. a location-scale family.

We look for an omnibus test that has reasonable power in most of the alternatives. When
such a test does not reject the null hypothesis, this is considered as an indication that the
null hypothesis may be correct.

In a lot of situations we use a goodness-of-fit test to show that H,, is plausible, i.e. we’re
happy if we don’t reject, it “confirms” our statistical model. (Warning: this is actually never
true with real data!)

Different tests

The tests we consider:
e Shapiro-Wilk test for H,:F €(N(u,0"); u€R,0°>0]
* Kolmogorov-Smirnov test for simple H, and adjusted for composite H,
e Chi-square test for simple H,

These tests use different test statistics, with different distributions under H,



When you perform a test, state clearly the null hypothesis H,, , the alternative hypothesis
H, | the chosen significance level a, the test statistic, its distribution under H, , the p-
value or critical region and the conclusion.

3.5.1 Shapiro-Wilk Test

The Shapiro-Wilk test for H,:F €| N(u,0”); u€R,0°>0]
The Shapiro-Wilk test is meant for testing the null hypothesis that the observations are
independent and originate from a normal distribution. This is a composite H,,

The test statistic is

(Z a,X,)

W= €

n

Z (Xi_X)Z

i=1
with a,...,a, constants based on the covariance of the order statistics.

Possible values for test statistic W are WE€({ . H; isrejected for “small” values of
w

n

The denominator of the test statistic W isequalto: Y, (X,—X)’=(n—1)S, , where
i=1
S, is the sample variance.

Distribution of W under H, isknown from tables (or R).

“Suppose that the distribution of W is not available and we have to use a bootstrap test.
Describe the steps that are made in a bootstrap test for the H, using W as test
statistic.”

Simulate the distributionof W under H, .Teststatistic W is non-parametric under
H, ,in other words, W has the same distribution for any underlying distribution.

Procedure: For i=1,...,B we do the following:

1. Generate asample X;,..,X; N(0,1)

2. Compute W =W(X;,. X}

3. Compute the bootstrap p-value

LWEW<W (X,,..., X))
B

Example Shapiro-Wilk test

Example Beewax data consisting of melting points (in Celsius) of 59 samples of beewax.



Histogram of beewax Normal Q-Q Plot
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Is normality an adequate assumption?
The Shapiro-Wilk test applied with significance level a=0.05 on beewax data

> shapiro.test(beewax)

Shapiro-Wilk normality test

data; heewax
W =0.9748, p-value = 0.2579

Since the p-value is bigger than the significance level (0.2579 > 0.05) we do not reject our
null hypothesis.

R: shapiro.test

3.5.2 Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test for
H,:F=F,
H,:F#F,

Thisis asimple H, .The test statistic is based on the maximum vertical distance between
1:’\1 and Fo

n

N(0,1) distribution and empirical distribution
of sample of size n=15
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The test statistic is :
Dn:G—oo<x<oo|1/3\n(x)—F0(x)‘.

H, isrejected for large values of D,



The distributionof D, under H, dependson n ,though isindependentof F, for
F, a continuous distribution,
D,=max max| Lk

1<i<n

%_FO(Xi)

b

Therefore, this test is nonparametric, or distribution free over the class of continuous
functions. The Kolmogorov-Smirnov test can only be used to test a simple hypothesis about a
continuous distribution.

R: ks.test

Example Kolmogorov-Smirnov test SR o 5

Test Hy:X,,..,X,~N(0,1)

> ks.test(x,pnorm,0,1)
One-sample Kolmogorov-Smirnov test

data: x Forss S0 Fias

D =0.1681, p-value = 0.73 -
alternative hypothesis: two-sided :

Gt DRI

H, isnot rejected, since the p-value is large. ¥ e,

Thsasivs Guaniiie

How not to use the Kolmogorov-Smirnov test

In order to test the composite H, of normality (i.e. the complete location-scale family),
the KS-test cannot be used.

The next application of the KS-test IS REALLY WRONG!!

> ks.test(x,pnorm,mean(x),sd(x))
One-sample Kolmogorov-Smirnov test

data: x
D =0.1287, p-value = 0.9378
alternative hypothesis: two-sided

An adjusted (bootstrap) version of the KS-test for testing normality will be discussed.

3.5.3 Chi-square test

The chi-square goodness-of-fit test for
H,.F=F,
H:F#F,

Thisis asimple H,



For a chi-square test, the real line is divided into adjacent intervals  I,,...,I, .
The test statistic is based on the difference between observed and expected number of
observations in intervals  I,....I, .

I I lk—1 i

The test statistic for a sample size k is

kK IN.—np.
X2=z [ znnpl]
i=1 pi

where N, isobserved number of observationsin I, and p,:FO{I,-} ,sothat np, is
the expected number of observationsin I; .

H, isrejected for large values of Xx* .

The distribution of X?> under H, is asymptotically Xiq . This approximation is
reliable when np,=5 forall i (Rule of thumb). The chi-square test is distribution free,
because the distribution of X? does not dependon F, .

R: chisquare (on Canvas)
Example chi-square test (1)

> range(sample)
[1] 0.02910324 4.46345348

Histogram of sample

15

> length(sample) Z o

[1] 50 -

> chisquare(sample, pexp, 10, 0, 5) « ©

$chisquare ®C T

[1] 26.30088 UL A

$pr sample

[1] 0.001823704

$N

(0,0.5] (0.5,1] (1,1.5] (1.5,2] (2,2.5]

% 9 1 7 2 s 7 o
(2.2,3] (3,3.5] (3.5(,)4] (4,4.2] (4.5,5]0 iy o)
$np S
[1]191174210000 ;\\
Example chi-square test (2) g Y 2 F 9% 2
> Db

[1]0.00.10.20.40.50.7091.21.6 2.3 Inf T

> chisquare(sample, pexp, 10, 0, 5,b) devided in 10 parts

4 08
T N T |



$chisquare

[1] 13.6
$pr
[1]0.1372824
$N
(0,0.105] (0.105,0.223] (0.223,0.357]
2 5 6
(0.357,0.511] (0.511,0.693] (0.693,0.916]
3 1 S
(0.9161.2] (12,161 (161,23
6 11 6
(2.3,Inf]
5
$np

[1]5555555555

Chapter 4
The bootstrap

The bootstrap is a technique which can be used for:
* investigating the variance of an estimator
e computing confidence intervals
e determining critical values of test statistics.

4.1 Bootstrap estimators for a distribution

Why bootstrap?
Suppose that a set of random variables X,,..., X, is available and that one is interested in
a function of these random variables, the randomvariable T, = T, ( X,,..,X, ), and
in particular in its distribution. This random variable T, is, for example, an estimator or a
test statistic, but it may also depend on an unknown parameter. When T, is an estimator,
then from its distribution a measure for its accuracy, like its variance, can be derived. In the
casethat T, is a test statistic, the critical values of the test follow from the distribution of
T, under the null hypothesis. In general, the distribution of T, is unknown, so that it is
an important problem to estimate it from the data

Summarized:
X,,...,X, from an unknown distribution P .



The location of P can be described by the population mean Hjp

T,,ZX is an unbiased estimator of [, .
T. isarandom variable (stochastic)
T, hasadistribution Q thatdependson P ,sowecallit Qp

What is this distribution (e.g. the variance) of T, ?

We can use bootstrap techniques to estimate  Q,

Bootstrap example
Example X,,...,X, are datafrom cloud seeding.

Histogram of sample
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sample

> mean(sample)
[1] 441.9846
Estimate of [l is X=442

How accurate is this number? Does it mean 1, €[420,460] or u,€[300,580]?

estimate of Q_P

[ T T T T 1
200 400 600 800 1000

Density
0.0000 0.0015 0.0030

T_n

We can use bootstrap techniques to estimate  Qp

Bootstrap scheme

Givendata X,,...,X, P
Bootstrap scheme in 3 steps:

1. Samples

2. Estimators

3. Estimate distribution Q;

Usedata X,,..,X, toestimate P by P (empirical or parametric).



Bootstrap sampling scheme

The bootstrap sampling scheme in 3 steps
1. Generate B timesasample X‘,,..,X°, from P

X
2. Compute forthe i -thsamplethevalue T°=T (iéiél,...,X") ,for
b
6
i=1,...,B
3. Use the empirical distribution Q3 of the sample T°,,...,T"; as estimate for
Q3 (which is an approximation of Q, ).

In the last step you can use e.g. the sample variance of T{'l, ooy Ti'B as estimate of the
varianceof T

Bootstrap types

Estimate P by P
We have two possibilities:
e P=P_ (empirical distribution)

Empirical bootstrap
The empirical distribution 13,1 is a simple estimator for P: new samples are created by
simply resampling from the original sample. This is the best estimator when nothing is known
about the unknown distribution.

. pP= P, (estimated parametric distribution)
Parametric bootstrap
This estimator is appropriate in situations where the unknown distribution P is known to
belong to a parametric family like the normal or exponential family, but its parameter value
0 is unknown. In this case it is natural to first find an estimator @n of 0 ,andthen

estimate P by the distribution in the family which has én as its parameter value. This
parametric estimator of P will be denoted by P 9, - The estimator ngu for the
distribution of T, is a parametric bootstrap estimator.

Remarks on bootstrap notation
. P dependson n ,sowe shouldwrite P, and Q;gn
én , Pén and Qpén

. é dependson n ,so we should write

e T° dependson n ,soweshouldwrite T ,....T° g

1

Example empirical bootstrap
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Sample with replacement.
Example empirical bootstrap
Example The empirical bootstrap scheme (i.e. using ﬁ:Pn ) in the case of the clouds data:

> B=1000

> Tstar=numeric(B)

> for(i in 1:B)

+ xstar=sample(clouds|,1], replace=TRUE)
+ Tstar[iJ=mean(xstar)

estimate of Q_P

Density
0.0000 0.0015 0.0030

+}

> hist(Tstar) o A6 G 6 NS
> sd(Tstar)

[1] 125.5883 =

Example parametric bootstrap
Example The yearly number of sun hours in De Bilt in 1920-1978. We want to estimate the
standard deviation of the sample median.
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We assume the numbers are normally distributed.

> median(sun)

[1] 1531 Histogram of Tstar
> mean(sun)
[1] 1543.797
> sd(sun)

[1] 153.9447 —
> var(sun)
[1] 23698.97
> length(sun) 3
[1] 59

> B=1000
> Tstar=numeric(B) ! . !
> fOI’(i in 1B){ 1500 1550 1600
+  xstar=rnorm(59,1543.797,153.9447) Tstar

+  Tstar[i]=median(xstar)}

> hist(Tstar)

> sd(Tstar)

[1] 24.36120

Two types of bootstrap errors

150
J

100
|

Frequency

We make estimation errors in the two steps:
1. Estimate P by P (andhence, Qp by Qj )
2. Estimate Qp by the empirical distribution of asample T°,...,T°; from Q;

The first error is unavoidable. Fitting a wrong parametric distribution P, will make this
error big. It is usually safer to use the empirical estimate for P .

The second error depends on B .Thelarger B ,the smaller this error. Usually
B=1000 is sufficient.

Example sun hours (1)

Example Assume we want to estimate the var of the sample mean of the sun hours
var (X,)



Option 1
1544,23699

Assuming Xl,...,X59~N(p,02) we've estimated P by P.=N|1,5
e

11,6°1=N¢ )- We

know from theory that the distribution of X, is Qp=N(u,0°/n) sowe don’t need to
take bootstrap samples X’ ’sand compute T ’shere!! ©

After having done the first step, P=N (ﬁ , 82) we can immediately estimate var (X)
by 6°/n=23699/59=402 .

Option 2
. ( 2) , ) 4P b 1544,23699
Assuming X,,..., X~ Nlu,0°) we've estimate \ P@:N(ﬂ,éz):N(', ). We can

still compute the bootstrap samples. Using B=1000 thisyields 399 .

This option is really worse than option 1 because we estimate the variance of Qpé using a
sample, while we know the parameters of this normal distribution.

Option 3

We don’t assume normality and use the empirical bootstrap scheme
> var(bootstrap(sun,mean,1000))

[1] 380.055

> var(bootstrap(sun,mean,1000))

[1] 425.2614

> var(bootstrap(sun,mean,10000))

[1] 402.4628

> var(bootstrap(sun,mean,10000))

[1] 390.7697

Part of the variation is due to the first bootstrap error.

Summarizing the 3 options:

1. Parametric "bootstrap" with normal theory (without T° ’s)

2. Parametric bootstrap with bootstrap sampling (with T° ’s)

3. Empirical bootstrap sampling
The first option is only possible in special cases. For example, in the example of the sd of the
sample median, sampling of T° ’swas really necessary in a parametric bootstrap set up,
since the distribution of median( X ) is not easily derived from the distribution of the

X, s.

Is option 1 or 3 the best? In this case there isn’t much difference. Normality is a little
doubtful (SW-test: p=0.08), so the empirical bootstrap estimator would slightly be preferred.

4.2 Bootstrap confidence intervals

Set-up: estimate an unknown parameter 6 by the estimator T (with unknown
distribution Qp ). The accuracy of T can be expressed in terms of



e var(T) or sd(T) (we've seen bootstrap estimators for this)
e confidenceintervalfor 6 ,basedon T
A confidence interval is a correct manner to present the accuracy of the estimator T. The

interval is based on the distribution Qp of T .Sincewedon’tknow Qp, ,we canuse
the bootstrap estimate (the empirical distribution of a sample from Q3 ) asan

approximation.

The confidence interval, before bootstrapping

T estimates 0 ,sowe hope that the distribution of T—60 is concentrated around O.
Denote the distributionof T—-6 by G

By the definition of quantiles:

PG 'a)<T-6<G ' (1-ql|
(P|T-0<G'(1-a)|-P(T-6<G al)
>l—a—a=1-2«a
This can be written as:

P(T-G '(1-a)<0<T—G '(a))21-2a.
Hence,a (1—2a) confidence interval for 6 is:
[T-G '(1-a),T-G '(a)].

In pictures:
Qp: distribution of T, G: distribution of T, -6
6 6w o  6'-a)
Ta Ta=-0
Qp and realisation ofT,, realised conf.int. for ©
o t t-6(1-a) 6t t-6'(
T Ts . .
The bootstrap confidence interval
-1.
(1-a), T-G ¢
In confidence interval T—G ' unknown are:
b

. G ,i.e.thedistributionof T-0 ,
. Q, ,i.e.thedistributionof T ,
. 0 , the parameter of interest.

Hence, estimate



the distribution G of Z=T-0
by the empirical distribution of Z;=T;—T , i=1,...,B,

with Ti,.-.,Tﬁ; a bootstrap sample (empirical or parametric).

G '(a) isestimatedby Z.p -
G '(1—a) isestimatedby Z°(; o5 -

Hence, the unknown interval [T—G '(1—a),T—G '(a)] is estimated by the
computable interval
[T_Z(y{[\l—a]\BH’T_ZGE[aBII‘]
which is equal to
2T =T 101> 2T =T (o))

Because Zf: Tf—T

R: quantile
In pictures:
Histogram of tstar Histogram of zstar
wn wn
s 1 L o | AL
o o
> Yo = > -
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t Z'[(xB] o Z [(1-a)B]

> zstar=tstar-tn
> ¢(tn-quantile(zstar,0.975),tn-quantile(zstar,0.025))
97.5% 2.5%
-0.1129308  11.3179222
> 2*tn-quantile(tstar,c(0.975,0.025))
97.5% 2.5%
-0.1129308  11.3179222

Reliability of a confidence interval

Problem Several possibilities to construct confidence intervals (e.g. empirical or parametric
bootstrap). Which one works best? That really depends on the situation (statistic T ,
distribution P of X, , ..).

Approach Simulate actual coverage probability of nominal (1—0() confidence intervals!
Repeat the following procedure many (e.g. K=1000 ) times:



generate a random sample X,,...,X, accordingto P, ,
derive statistic T, , generate bootstrap samples TLL,...,TLB ,
construct confidence interval as explained before,

is 0 partof the interval? If yes, output: 1, else: 0.

Hoobde

Number of 1's divided by K~ coverage probability.

4.3 Bootstrap tests

Situation Consider a sample X,,..., X, from an unknown distribution P .Suppose we

want to test the goodness-of-fit hypothesis
H,.P€P, versus
H,:P¢P,

for some collection of distributions P, . Use a test statistic T
Problem: we don’t know the distribution Qp of T for PE€P,

We can use a bootstrap test.

Idea Estimate the unknown distributionof T (thatis Qp ) by the empirical distribution
ofasample T ,....,T; .

Example(1)
Consider the data (histogram and QQ-plot against

Histogram of x

12

exp(1) ).

3.0

2.0

Frequency

and the hypotheses
Hy:X,,...,X,~exp(A) forsome\>0

Sorted Data

1.0

02468
i1 ¢ i ] |
o]

)

0.0

H,:X,,..,X, arenotexp distributed N B B B

which we want to test using test statistic g Quariion:of Exp
1= median(X)
mean (X )

We simulate T under H, ,because we don’t know the distribution of T under
HO

The distribution Qp of T wunder H, doesnotdependon A .Thus, Q, isthe
same regardless which exponential distribution the X; come from. Therefore, T s
called nonparametric.

We simulate the distribution Qp, of T usingthe (parametric) bootstrap scheme:

o Generate B timesasample X'=(X‘,...,X",) from exp(1)



. _median(X")
* Compute for each sample thevalue T =—————
mean (X*)
Remark The label bootstrap is actually inappropriate for this test, because we do not use the

data in the generation of the T s (cf. empirical and parametric bootstrap estimation).

> for(iin 1.B) { Histogram of tstar

+ xstar=rexp(n)

+ tstarfil=median(xstar)/mean(xstar) }

> median(x)/mean(x)

[1] 0.5058572

> p=2*min(sum(tstar<=0.5058572)/B,sum(tstar>=0.5058572)/B)
>p

[1]0.112

2.0

Density
1.0

0.0

—— T | |
04 06 08 10 1.2

H, isnot rejected, since the (two-sided) p-value is tstar
0.112.

Example(2)

Remember how not to use the Kolmogorov Smirnov test for the composite null hypothesis
Hy: X,,.., X, Nlu,o°) forsome p and ¢

> ks.test(x,pnorm,mean(x),sd(x))
This R-command tests the simple  H,: X,,..., X, N(X,Si)

blue: distribution of
original KS-statistic D,,

200
|

red: distribution of the
modified KS-statistic D,

Frequency
10
|

| | | I |
0.05 0.10 0.15 0.20 0.25
D

The adjusted KS-test statistic Bn is informative, and therefore a sensible test statistic.
However, the reported p-value of

> ks.test(x,pnorm,mean(x),sd(x))

is wrong, since it is based on the blue distribution of D, , whereas it should be based on
the red distribution of D, . Using bootstrap testing, one can simulate the red distribution

of D, .



Bootstrap: Warnings

Warning The bootstrap does not always “work” (well)!
e Typical risk: if you use a parametric bootstrap but sample contains outliers and
parameter estimator is sensitive = possibly bad bootstrap estimates (see exercise 4.1).
e Extreme order statistics: the empirical bootstrap usually fails to approximate the
distribution of X(l):min (Xl,...,Xn) or X(n):max(Xl,...,Xn
e |f the distribution underlying your sample has heavy tails (e.g. non-existent first

moment), the empirical bootstrap fails. (It always produces no tails, i.e. light tails.)
(See Example 4.6 in syllabus with the Cauchy distribution).




Chapter 5
Robust estimators

Idea Most methods from statistics are based on assumptions on the probability distribution
from which the observations originate. Such assumptions are almost never completely
correct. It is therefore important to investigate how sensitive a method is for deviations from
the assumptions. Statistical methods which are relatively insensitive to small deviations from
the model assumptions are called robust methods.

Robust methods are insensitive to small deviations from the assumptions, e.g.
* |arge deviations from the assumptions in some observations
¢ small deviations from the assumptions in all observations
e small deviations from the assumed (in)dependence structure

An outlier is a data point that deviates from the other observations, e.g. extremely large or
extremely small values. In some cases outliers are ‘wrong’ data, from which mistakes are
easily made. A number of ‘incorrect’ observations up to 10% is not abnormal.

Sometimes it is possible to identify, or even correct, mistakes by careful screening of the
data. In general, it is recommended to perform a statistical data analysis both with and
without suspect data points and compare the results. Obviously, it is wrong to delete
observations from a data set just for subjective reasons. A good robust procedure decreases
the influence of incorrect observations in an objective manner.

5.1 Robust estimators for location

5.1.1 Trimmed means
So far we have seen the mean and the median as location estimators.

The mean is very sensitive to outliers, i.e. is not robust.
The median is very insensitive to outliers, i.e. is very robust.

Both are examples of a -trimmed means:

1 n—zﬂa‘:n} 1
T =—- X ),0<a<=
" n=2[an] = ) 2

+1

In words: the [an] largest and smallest observations are deleted and the average is taken
over the remaining values. It is clear that outliers have a smaller influence on

, 1
T,. thenon X ,because they are ‘trimmed away’ when T, , isused (if 0£a<§



, 1
X is the O-trimmed mean, whereas the other extreme, the (almost) 5 -trimmed mean

is close to the median. The median is very robust against the occurrence of outliers. Even
when almost all observations are extreme, the median is a useful location estimator.
The concept of location

What do these location estimators estimate?

For independent random variables X,,..., X, from adistribution F withdensity f ,
the usual mean X, estimatesthe population mean

EX=[ xdF(x)
and the trimmed mean T,, estimates the trimmed population mean
F'(1-a)
- [ xdF(x|.
1—20’ F71((X)

where dF (x) denotes integration with respect to the (continuous/discrete) distribution
measure F

Example: Some trimmed means of distributions

a N(0,1) lognorm(0,1) x37 x3

0 0 1.65 4 8
0.1 0 1.24 3.64 7.63
0.2 0 1.11 3.50 7.49
0.3 0 1.04 341 7.40
0.4 0 1.01 3.37 7.36
0.5 0 1 3.36 7.34

N(0,1) lognormal(0,1) chi(4) chi(8)
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Example: location estimators
Location estimators for Newcomb’s data: original set, and altered set (add an extra outlier).

> nnew=c(newcomb,-60)

> mean(newcomb) > mean(nnew)

[1] 26.21212 [1] 24.92537

> mean(newcomb,trim=0.1) > mean(nnew,trim=0.1)
[1] 27.42593 [1] 27.29091

> mean(newcomb,trim=0.2) > mean(nnew,trim=0.2)
[1] 27.35 [1] 27.2439

> mean(newcomb,trim=0.3) > mean(nnew,trim=0.3)
[1] 27.25 [1] 27.14815

> mean(newcomb,trim=0.4) > mean(nnew,trim=0.4)

[1] 27.28571 [1] 27.2



> median(newcomb) > median(nnew)

[1] 27 [1] 27

The mean is very sensitive to outliers, trimmed means much less. This influence of outliers
can be quantified in the influence function.

Asymptotic influence function

The sensitivity of the mean for outliers can be quantified by an influence function (IF).
Suppose that we have a random sample of n observations X;,...,X, and that we next
obtain one additional observation of size y . When we calculate the mean for both cases,

the difference of these means, ‘the influence of an additional observation in y’, is:
Xty

Multiplyby n+1 andtake n - o toobtain IF(y)=y—EX
The function ywIF [y): y—E X is the (asymptotic) influence function of the mean.

The influence function for the mean (left) and the a-trimmed mean (right).
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For the mean the IF is not bounded, whereas for the median the IF is bounded.

Boundedness of the influence function is an important prerequisite for an estimator to be
robust. Estimators with an unbounded IF, like the mean X , are not robust. Estimators
with a bounded IF are called B-robust; the median is B-robust. (Note, however, that the
influence of an extreme observation is not zero!) All a -trimmed means with o>0 are
B-robust!

LIF(y|Vi
The gross error sensitivity is equal to ol . The smaller the gross error sensitivity,

y
the more B-robust the estimator.

5.1.2. M -estimators

There are many other robust measures for location. An important class of such measures is
formed by the so-called M -estimators. An M -estimator can be regarded as a



generalization of a maximum likelihood estimator. For a given function p ,the M -
estimator M, can be defined as the value of M, that maximizes the expression

H p(Xl_Ml‘l>
i=1

Most of the timean M -estimator M, is not computed as the solution of a
maximization problem, but as the solution of an equation of the form
l/j(é’Xi_Mn):O

n
>
i=1

for some function ¢

When ¢lx)=x ,then anXn , ML estimator for normal distribution.
When y(x|=sign(x) ,then M, =median(X|, ML estimator for Laplace distribution.

The influence function of an M -estimator is equal to:

[ w(x=iT, [F)dF (x)
PRI L)

and has the same shape as the function ¢ . Hence, to obtain a B-robust M -estimator it
is sufficient to choose a bounded function ¢ . In other words, bounded ¥ -functions
yield B-robust location estimators.
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IFs for some ¥ -functions (that yield ML estimator for denoted distribution).



