
Chapter 1 

Introduc0on 
What is sta(s(cs?

Sta(s(cs is the science of collec(ng, analyzing and interpre(ng data

The stages of a sta(s(cal study:

 Research ques(on 

 Experimental design 

 Data collec(on 

 Data analysis 

 Interpreta(on of results 

 Presenta(on of results and conclusions 

Aim of this course 

Give theore(cal and prac(cal insight in the last 3 stages. 

Course overview

In each sta(s(cal study we need a sta(s(cal model. 

Data analysis 

 get an impression of data 

 validate sta(s(cal model 

 summarize data (descrip(ve sta(s(cs) 

 analyze (e.g. es(mate/test parameters in model)

Interpreta(on of results 

 this is not always straighMorward...

Presenta(on of results and conclusions

 translate back to the experimental context

Course overview

For the data analysis we discuss: 

 Summarizing data (Chapter 2)

 Exploring distribu(ons (Chapter 3)

 Bootstrap methods (Chapter 4)

 Robust es(mators (Chapter 5)

Rela%vely insensi%ve to small devia%ons from the assump%ons

 Nonparametric tests (Chapter 6)

 Analysis categorical data (Chapter 7)

 Mul(ple linear regression (Chapter 8)

Interpreta(on and presenta(on of results and conclusions are prac(ced in the assignments.
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Chapter 2 

Summarizing data  

2.1 Data 

Data: quan(fied measurements of a study.

Data is typically stored in variables.

Variable: a property of an individual/object that can be measured 

Variables can be 

 measured on different scales, 

 univariate, bivariate or mul(variate, 

 dependent or independent.

Measurement scales of variables 

Qualita(ve variable 

 nominal (e.g. gender) 

Loca%on measures like median or mean and spread measures have no meaning.

 ordinal (e.g. level of educa(on)

The categories can be ordered, without measurable distances.

The median and the mode can be useful, but the mean and spread measures have no 

meaning.

Nominal and ordinal variables are discrete by de?ni%on.

Quan(ta(ve variable 

       discrete 

 interval (e.g. date) 

 ra(o (e.g. counts) 

con(nuous

 interval (e.g. temperature in Celsius) 

 ra(o (e.g. dura(on of this lecture, temperature in Kelvin)

For quan%ta%ve variables the loca%on measures (mean, mode and median) and the spread 

measures can all be used. 

For interval scales only intervals are meaningful, ra%os are not. DiEerences are meaningful.

For ra%o scales both intervals and ra%os are meaningful. There is a zero. 

Number of characteris(cs measured in one variable
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 univariate (e.g. gender) 

 bivariate (e.g. gender and level of educa(on) 

 mul(variate (e.g. gender, level of educa(on, shoe size, age, height)

Role of the variables 

 dependent: variable of interest 

 independent: variables containing background informa(on

Example 2.2 In a study about the dependence of poli%cal opinions on variables like age, sex,

or religion, the poli%cal opinion is the dependent variable and answers to a ques%on about

poli%cal opinion are the values of the dependent variable. Age, sex, religion, and so on, are

the independent variables.

2.2 Summarizing data

A good summary shows at least

 loca(on, scale

 range, extremes 

 holes, modes 

 symmetry

Addi(onally it may answer the following ques(ons 

 are data rounded? 

 are data from a known distribu(on? 

 do we need to divide the data into groups?

 is there influence of other variables, like (me? 

 what is the rela(on between variables?

2.2.1 Summarizing Univariate Data 

Graphical summaries 

 histogram 

Too few or too many bin intervals gives a bad result. Some%mes it’s beLer to choose a 

histogram with less bin intervals, although more data informa%on gets lost. It gives a 

beLer impression of the global spread of the data. 

 stem-and-leaf-plot 
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With stem-and-leaf plots liLle informa%on about the data gets lost. Stem-and-leaf plots 

give an impression about the shape of the data distribu%on while retaining most of the 

numerical informa%on. 

 empirical distribu(on func(on 

The empirical distribu%on func%on is de?ned as 

F̂n ( x )=1
n
∑
j=1

n

1{ xj ≤ x}

If x< x(1)  then F̂n ( x )=0 , if x(1)≤x<x (1)  then F̂n ( x )=
1

n
, if  x(1)≤x<x (3)  then

F̂n ( x )=
1

n
, and so on. 

 boxplot 

combina%on of a graphical and a numerical summary (it also contains numerical info like 

quar%les, interquar%le range, median)

Numerical summaries

mode:       the loca(on of the maximum of the probability density of the distribu(on. 

The  skewness and the  curtosis give an idea of  the asymmetry and the size of  the tails,

respec(vely, of the distribu(on. 

Univariate Summaries Example

Example data incomes of 100 white families and 100 colored families in US.

Two univariate data sets (not one bivariate data set). 
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Numerical summaries

Graphical summaries
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2.2.2 Summarizing Bivariate Data 

Graphical summaries 

 scaeer plot 

scaLer plots are used to plot the values of one quan%ta%ve variable against the 

corresponding values of the other quan%ta%ve variable. They can help us to detect 

rela%onships between the variables, like linear or quadra%c rela%ons, to ?nd extreme 

values, or to determine clusters of observa%ons.

 (me plot 

the %me plot is a scaLer plot of the data against %me

 con(ngency table

Whereas in a scaeer plot the individual data values can s(ll be recognized, in a con(ngency

table this informa(on may get lost (when the categories consist of more than one value). The

advantage of con(ngency tables is that they can be used not only to summarize data that are

measured on  a  quan(ta(ve  scale,  but  also  to  summarize  data  that  are  measured  on  a

nominal or ordinal scale.

Numerical summaries

Table: Numerical summaries of bivariate data (x1, y1 ) ,…, (xn , yn ) .  

(r1 ,…,r n )  and  (t 1,…, t n)  are  the  rank  vectors  of  (x1,…, xn )  and  ( y1 ,…, yn ) ,  in  the

ordered samples (x(1) ,…, x(n))  and ( y(1 ),…, y(n)) , respec(vely. The quan(ty Nτ  is the number

of pairs  (i , j)  with  i< j   for which either  xi<x j  and  yi< y j , or  xi>x j  and  yi> y j
(“concordant”). Let z>0 . The sign func%on sgn ( z )=1, sgn(−z )=−1, sgn (0)=0 .

The  sample  correla0on  coe@cient  r xy  is  a  measure  of  the  strength  of  the  linear

rela(onship between  x  and  y . It can take values from -1 to 1. A  r xy -value close
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to−1 means that there is a strong nega(ve linear rela(on between x and y. Equality to −1 or 1

means that the rela(onship is exactly linear.

Bivariate Summaries Example

Example data number of deaths due to lung diseases in the UK between 1974 and 1979, 

registered monthly

2.2.3 Summarizing Mul0variate Data 

Graphical summaries 

 scaeer plot 

 con(ngency tables 

For a mul(variate data set it is oken useful to make scaeer plots or con(ngency tables for all

(relevant)  pairs of  variables.  With  7  variables  this  yields  already  21  graphs  to  study.

Moreover, it can be misleading to project higher-dimensional data into two dimensions.

Mul(variate Summaries Examples

Example: Chernoff faces display mul(variate data in the

shape of a human face.

Chernoff faces handle each variable differently: the

individual parts, such as eyes, ears, mouth and nose

represent values of the variables by their shape, size,

placement and orienta(on. 

Idea humans easily recognize faces and no(ce small

changes without difficulty.
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Chapter 3 

Exploring distribu0ons

In order to explore distribu(ons we will discuss  

 Quan(le func(on 

 Loca(on-scale family 

 QQ-plots and symplots

Distribu(on func(ons 

Let us focus on a certain (real-valued) random variable X , e.g. body weight of a random 

individual in this lecture room. 

The popula(on distribu(on func(on F  is the underlying distribu(on of the variable in the

popula(on. That is, F(x )  is the probability that X  isn’t greater than x∈R  in this 

popula(on.  

The empirical distribu(on func(on F̂n  is the distribu(on of the variable in the sample

x1 , ... , xn   

F̂n ( x )=1
n
∑
j=1

n

1{xj ≤ x}
.

When genera(ng a sample from a given distribu(on, the empirical distribu(on F̂n  will 

vary around the popula(on distribu(on F . The larger the sample, the smaller this 

varia(on. 

Empirical and popula(on distribu(on func(on of a sample with underlying distribu(on

N (0,1)  

Goal

lOMoARcPSD|2306213



The empirical distribu(on helps to determine the underlying (popula(on) distribu(on. 

This underlying distribu(on is usually part of a (parametric) sta(s(cal model.  Hence, the 

empirical distribu(on helps to check or set up a sta(s(cal model. 

Goal: find underlying distribu(on

Type of ques(ons that we deal with in this chapter:

One sample data 

 Do data originate from a specific distribu(on? (QQ-plot, goodness-of-fit tests) 

 Is the underlying distribu(on symmetric? (symplot) 

Two sample data 

 Do both data sets originate from same distribu(on? (QQ-plot)

3.1 The quan0le func0on and loca0on-scale families 

Quan(le func(ons

If for a given α∈(0,1)  there exists exactly one xa∈R  such that F (xa )=α , then

xa  is called the α -quan(le of F. The α -quan(le is denoted by F
−1(α ) .  As this 

nota(on suggests, the quan(le func(on is the func(on α↦F
−1(α ),  the inverse of F, if 

this inverse is well-defined. This is the case when F is a strictly increasing func(on.

Apart from strictly increasing pieces, a cumula(ve distribu(on func(on can have jumps as 

well as constant pieces. Therefore, for fixed α  the equa(on F(x )=α  has exactly one, 

none or infinitely many solu(ons. In order to be able to define the α -quan(le in the laeer

two cases, the quan(le func(on of F is in general defined by 

Defini(on  F
−1(α )=inf {x :F (x)≥α }, α∈(0,1) .

R: qnorm, qexp, qpois etc.

Loca(on-scale family

If a random variable X has distribu(on F , then the distribu(on of Y=a+bX   is

Fa,b , 

a∈R ,b>0 , given by
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Fa,b ( x )=F( x−ab )
The collec(on of distribu(ons {Fa,b :a∈R ,b>0 }  is called the loca(on-scale family 

corresponding to F . 

If EX=0  and varX=1  then EY=a  and varY=b1 .

Quan(les of F and F  a,b  

Claim There is a linear rela(on between F
−1(α )  and Fa,b

−1 (α ) : 

Fa,b
−1 (α )=a+b F−1(α )

Proof (for inver(ble F )

α=Fa,b (Fa,b
−1 (α ) )=F ( Fa,b

−1 (α )−a
b )

F
−1 (α )=F−1(F (Fa, b

−1 (α )−a

b ))=Fa, b
−1 (α )−a

b

Fa,b
−1 (α )=a+b F−1(α )

Because Fa,b
−1 (α )=a+b F−1(α) , the points {(F−1 (α ) ,Fa ,b

−1 (α )) :α∈(0,1)}   are on the 

straight line y=a+bx .

N (0,1)  and N (1,4)  are in the same loca(on-scale

family. 

N (0,1)   and exp(1)  are not in the same loca(on-

scale family. 

N (0,1)  and Uniform(0,1)  are not in the same

loca(on-scale family. Normal distribu(ons have heavier

tails. 

N (0,1)  and Cauchy(1)  are not in the same

loca(on-scale family. Cauchy distribu(ons have heavier

tails.

3.2  QQ-plots 

For independent random variables X1 ,... , Xn  with (con(nuous) distribu(on F , we 

have E F (X (i))=
i

n+1
. So X (i )≈ F

−1(
i

n+1
) .
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If Y 1 ,... , Y n  with Y i=a+b Xi  have distribu(on Fa,b  , we have E Fa, b (Y (i ))=
i

n+1
. 

So            Y (i)=Fa, b
−1 ( i

n+1 )=a+b F−1(
i

n+1
) . Hence, the points 

{(F−1( i

n+1 ) , y(i)): i=1 ,…,n}
are approximately on the straight line y=a+bx . 

In prac(ce F is unknown. A QQ-plot is a plot of these points for some chosen distribu(on

F . 

R: qqnorm, qqexp, qqunif, etc.

A QQ-plot yields a method to judge whether the data come from a certain distribu(on by 

only looking at the plot. When the plot yields approximately the line y=x , this is an 

indica(on that the data come from the distribu(on F . Devia(ons from the line y=x  

indicate differences between the true distribu(on of the data and F . The kind of 

devia(on from y=x  suggests the kind of difference between the true distribu(on and

F . The simplest case of such a devia(on is when the QQ-plot is a straight line but not the 

line y=x , as in Figure 3.3. This is an indica(on that the data do not originate from F , 

but come from another member of the loca(on-scale family of F . Interpre(ng a bent 

curve is more complicated. Such QQ-plots mainly yield informa(on about the rela(ve 

thickness of the tails of the distribu(on of the data with respect to those of F .

Example QQ-plot

Example QQ-plot of X1 ,... , Xn N (µ,σ1)  against N (0,1)  for varying n ,µ  and σ
1 .

Using QQ-plots 

 plot a histogram

 plot different QQ-plots and choose the most linear one 
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 determine loca(on (a) and scale (b) 

o by visually fipng a straight line y=a+bx  

o by fipng sample mean and variance to theore(cal values 

Example

 y=0+1x
 X́=1.98 , var (X )=4.1  

exp(1 /1)  is a suitable distribu(on for this sample.

3.3  Symplots

The symmetry plot is used to inves(gate symmetry or skewness of a distribu(on. 

A random variable X  is symmetrically distributed around θ  if X−θ and θ−X  

follow the same distribu(on. 

To judge whether or not a sample originates from a symmetric distribu(on, a histogram or a 

stem-and-leaf plot can be used. Naturally, the skewness parameter gives informa(on about 

symmetry too, although in spite of its name one should not overes(mate its usefulness. Also 

a large difference between mean and median indicates a skewed distribu(on.

Skewness can also be assessed with the quan(le func(on. 

If F  is symmetric around θ , we have

F
−1(1−α)−θ=θ−F−1(α) , α∈(0,1).

Hence, the points {(θ−F−1(α ), F−1(1−α)−θ):α ∈(0,1)}  lie on the straight line y=x .

For data from a symmetric distribu(on we expect that the 

{(med ( x )−x (i ) , x (n−i+1 )−med ( x ) ) : i=1 ,… , ⌊
n

1
⌋}.

also lie on the straight line y=x . A plot of these points is called a symmetry plot or, 

briefly, a symplot.

R: symplot

Example symplot
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As in the case of QQ-plots, sample size maeers!

First is symmetrical, second and third clearly have skewed distribu(ons since they don’t 

follow the line y=x .

Systema(c search for underlying distribu(on

 Inves(gate symmetry with symmetry plot (and histogram) 

 Try several QQ-plots

o If symmetric:

o If not symmetric: 

 If not sa(sfactory, try transforma(ons

3.4  Two-sample QQ-plots

Two sample QQ-plots (also called an empirical QQ-plot) are used to inves(gate whether two 

samples x1 , ... , xm  and y1 , ... , yn  originate from the same distribu(on, or from 

distribu(ons in the same loca(on-scale family. 

If m=n , then this empirical QQ-plot is a plot of the points {(x(i) , y(i)) : i=1,1,. .., n }.

If m<n , it is a plot of the points  {(x(i) , y(i)
¿ ) : i=1,1,. ..,m } , where 
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y(i)
¿ =
1

1 ( y([ i n+1m+1 ])
+ y

([ i n+1m+1
+ m

m+1 ])) .

The idea is just to match x(i)  with y( j)  for which 
i

m+1
≈

j

n+1
. 

The reasoning is similar to one-sample QQ-plots: roughly a straight line indicates that it is 

plausible to assume that the two samples are from distribu(ons in the same loca(on-scale 

family.

R: qqplot

3.5   Goodness of Pt tests

Idea: Assume we consider a sample x1 ,…, xn  from an unknown distribu(on F .

Another (more formal) way to check whether this data comes from a ‘known’ distribu(on is a

goodness of fit test. With these tests, the null hypothesis that the data comes from a certain 

distribu(on F , or from a member of a certain family of distribu(ons, can be tested 

against the alterna(ve hypothesis that this is not the case:

H 0:F∈F0

H 1:F∉ F0

where either F0  = { F0 } (simple H 0 ) or F0  is a small collec(on of distribu(ons 

(composite H 0 ), e.g. a loca(on-scale family.

We look for an omnibus test that has reasonable power in most of the alterna(ves. When 

such a test does not reject the null hypothesis, this is considered as an indica(on that the 

null hypothesis may be correct.

In a lot of situa(ons we use a goodness-of-fit test to show that H 0 is plausible, i.e. we’re 

happy if we don’t reject, it “confirms” our sta(s(cal model. (Warning: this is actually never 

true with real data!)

Different tests

The tests we consider:

 Shapiro-Wilk test for H 0:F∈{N (µ,σ1); µ∈R ,σ1>0 }

 Kolmogorov-Smirnov test for simple H 0 and adjusted for composite H 0

 Chi-square test for simple H0

These tests use different test sta(s(cs, with different distribu(ons under H 0 .
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When you perform a test, state clearly the null hypothesis H 0 , the alterna(ve hypothesis

H 1 , the chosen significance level α, the test sta(s(c, its distribu(on under H 0 , the p-

value or cri(cal region and the conclusion.

3.5.1  Shapiro-Wilk Test 

The Shapiro-Wilk test for  H 0:F∈{N (µ,σ1); µ∈R ,σ1>0 }

The Shapiro-Wilk test is meant for tes(ng the null hypothesis that the observa(ons are 

independent and originate from a normal distribu(on. This is a composite H 0 .

The test sta(s(c is 

W=

(∑
i=1

n

ai X (i ))
1

∑
i=1

n

(Xi− X́)1
∈¿

with a1 , ..., an  constants based on the covariance of the order sta(s(cs. 

Possible values for test sta(s(c W  are W ∈¿ .  H 0  is rejected for “small” values of

W .

The denominator of the test sta(s(c W  is equal to:  ∑
i=1

n

(Xi− X́)1=(n−1)Sn , where

Sn is the sample variance.

Distribu(on of W  under H 0  is known from tables (or R). 

 “Suppose that the distribu%on of W  is not available and we have to use a bootstrap test. 

Describe the steps that are made in a bootstrap test for the H 0 using W  as test 

sta%s%c.”

Simulate the distribu(on of W  under H 0 . Test sta(s(c W  is non-parametric under

H 0 , in other words, W has the same distribu(on for any underlying distribu(on. 

Procedure:  For i=1 ,…,B  we do the following:

1. Generate a sample X1
¿
,.. , Xn

¿
N (0,1)

2. Compute Wi

¿=W (X1
¿
, .. , Xn

¿)

3. Compute the bootstrap p-value 

¿W i

¿
:Wi

¿<W (X1 ,…, Xn)

B

Example Shapiro-Wilk test 

Example  Beewax data consis(ng of mel(ng points (in Celsius) of 59 samples of beewax.
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Is normality an adequate assump(on?

The Shapiro-Wilk test applied with significance level α=0.05 on beewax data 

> shapiro.test(beewax)

Shapiro-Wilk normality test

data: beewax 

W = 0.9748, p-value = 0.2579

Since the p-value is bigger than the significance level (0.2579 > 0.05) we do not reject our 

null hypothesis. 

R: shapiro.test

3.5.2  Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test for

H 0:F=F0
H 1:F≠ F0

This is a simple H 0 . The test sta(s(c is based on the maximum ver(cal distance between

F̂n and F0 :

The test sta(s(c is : 

Dn=
¿−∞<x<∞|F̂n ( x )−F0 (x )|.

H 0  is rejected for large values of Dn .
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The distribu(on of Dn  under H 0  depends on n , though is independent of F0  for

F0  a con(nuous distribu(on,

Dn=max
1≤i≤ n

max{| in−F0 (X (i) )|,|i−1n −F0 (X (i) )|}.

Therefore, this test is nonparametric, or distribu(on free over the class of con(nuous 

func(ons. The Kolmogorov-Smirnov test can only be used to test a simple hypothesis about a

con(nuous distribu(on.

R: ks.test

Example Kolmogorov-Smirnov test

Test H 0: X1, ... , Xn∼N (0,1)

> ks.test(x,pnorm,0,1)

One-sample Kolmogorov-Smirnov test

data: x 

D = 0.1681, p-value = 0.73 

alternative hypothesis: two-sided 

H 0  is not rejected, since the p-value is large.

How not to use the Kolmogorov-Smirnov test

In order to test the composite H 0  of normality (i.e. the complete loca(on-scale family), 

the KS-test cannot be used.

The next applica(on of the KS-test IS REALLY WRONG!!

> ks.test(x,pnorm,mean(x),sd(x))

One-sample Kolmogorov-Smirnov test

data: x 

D = 0.1287, p-value = 0.9378 

alternative hypothesis: two-sided

An adjusted (bootstrap) version of the KS-test for tes(ng normality will be discussed.

3.5.3  Chi-square test 

The chi-square goodness-of-fit test for 

H 0:F=F0
H 1:F≠ F0

This is a simple H 0 . 
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For a chi-square test, the real line is divided into adjacent intervals I1 , ..., I k .

The test sta(s(c is based on the difference between observed and expected number of 

observa(ons in intervals I1 , ..., I k .

The test sta(s(c for a sample size k  is

X
1=∑

i=1

k [Ni−n pi]
1

n pi

where Ni is observed number of observa(ons in Ii  and pi=F0 {I i } , so that n pi  is

the expected number of observa(ons in Ii .

H 0  is rejected for large values of X
1 . 

The distribu(on of X
1  under H 0  is asympto(cally χk−1

1
. This approxima(on is 

reliable when n pi≥5  for all i  (Rule of thumb). The chi-square test is distribu(on free, 

because the distribu(on of X
1  does not depend on F0 .

R: chisquare (on Canvas)

Example chi-square test (1)

> range(sample)

[1] 0.02910324  4.46345348 

> length(sample) 

[1] 50 

> chisquare(sample, pexp, 10, 0, 5) 

$chisquare 

[1] 26.30088

$pr 

[1] 0.001823704 

$N 

(0,0.5] (0.5,1] (1,1.5] (1.5,2] (2,2.5] 

16          9           11        7           2 

(2.5,3] (3,3.5] (3.5,4] (4,4.5] (4.5,5]

    2         0           0           3           0 

$np 

[1] 19 11 7 4 2 1 0 0 0 0

Example chi-square test (2)

> b 

[1] 0.0 0.1 0.2 0.4 0.5 0.7 0.9 1.2 1.6 2.3 Inf 

> chisquare(sample, pexp, 10, 0, 5,b) 
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$chisquare 

[1] 13.6 

$pr 

[1] 0.1372824 

$N 

       (0,0.105]  (0.105,0.223]  (0.223,0.357] 

                2           5              6 

(0.357,0.511]  (0.511,0.693]  (0.693,0.916] 

             3    1 5 

    (0.916,1.2]        (1.2,1.61]        (1.61,2.3]

      6  11 6 

         (2.3,Inf] 

     5 

$np 

[1] 5 5 5 5 5 5 5 5 5 5

Chapter 4

The bootstrap

The bootstrap is a technique which can be used for:

 inves(ga(ng the variance of an es(mator

 compu(ng confidence intervals

 determining cri(cal values of test sta(s(cs.

4.1 Bootstrap es0mators for a distribu0on

Why bootstrap? 

Suppose that a set of random variables X1 ,... , Xn  is available and that one is interested in 

a func(on of these random variables, the random variable T n = T n  ( X1 ,... , Xn ), and 

in par(cular in its distribu(on. This random variable T n is, for example, an es(mator or a 

test sta(s(c, but it may also depend on an unknown parameter. When Tn is an es(mator, 

then from its distribu(on a measure for its accuracy, like its variance, can be derived. In the 

case that T n is a test sta(s(c, the cri(cal values of the test follow from the distribu(on of

Tn  under the null hypothesis. In general, the distribu(on of Tn is unknown, so that it is 

an important problem to es(mate it from the data

Summarized:

X1 ,... , Xn  from an unknown distribu(on P . 
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The loca(on of P  can be described by the popula(on mean µP . 

T n=X́  is an unbiased es(mator of µP . 

Tn  is a random variable (stochas(c)

T n  has a distribu(on Q  that depends on P , so we call it QP . 

What is this distribu(on (e.g. the variance) of T n ? 

We can use bootstrap techniques to es(mate QP .

Bootstrap example

Example X1 ,... , Xn are data from cloud seeding.

> mean(sample) 

[1] 441.9846

Es(mate of µP is X́=441 . 

How accurate is this number? Does it mean µP∈[410, 460]  or  µP∈ [300,580 ]?

We can use bootstrap techniques to es(mate QP .

Bootstrap scheme

Given data X1 ,... , Xn P   

Bootstrap scheme in 3 steps: 

1. Samples 

2. Es(mators 

3. Es(mate distribu(on QP

Use data X1 ,... , Xn  to es(mate P  by 
~
P  (empirical or parametric). 
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Bootstrap sampling scheme

The bootstrap sampling scheme in 3 steps 

1. Generate B  (mes a sample X
¿
1 , ... , X

¿
n  from 

~
P  

2. Compute for the i -th sample the value 

X
¿

T
¿
i=Tn(¿¿¿¿1 ,... , X

¿
n)

¿
¿

, for

i=1,... , B

3. Use the empirical distribu(on 
~
Q~
P of the sample T

¿
1,… ,T

¿
B  as es(mate for

Q~
P  (which is an approxima(on of QP ). 

In the last step you can use e.g. the sample variance of T
¿
1,… ,T

¿
B  as es(mate of the 

variance of T .

Bootstrap types

Es(mate P  by  
~
P

We have two possibili(es: 

 ~
P=P̂n   (empirical distribu(on) 

Empirical bootstrap 

The empirical distribu%on P̂n is a simple es%mator for P: new samples are created by 

simply resampling from the original sample. This is the best es%mator when nothing is known

about the unknown distribu%on. 

 ~
P=P

θ̂
  (es(mated parametric distribu(on) 

Parametric bootstrap

This es%mator is appropriate in situa%ons where the unknown distribu%on P  is known to 

belong to a parametric family like the normal or exponen%al family, but its parameter value

θ  is unknown. In this case it is natural to ?rst ?nd an es%mator θ̂n  of θ , and then 

es%mate P  by the distribu%on in the family which has θ̂n  as its parameter value. This 

parametric es%mator of P  will be denoted by Pθ̂
n

. The es%mator QP
θ̂n

 for the 

distribu%on of T n  is a parametric bootstrap es%mator.

Remarks on bootstrap nota(on

 P  depends on n , so we should write 
~
Pn  and Q~

Pn  

 θ̂  depends on n , so we should write θ̂n , Pθ̂
n

 and QP
θ̂n

 T
¿
i  depends on n , so we should write T

¿
n ,1 ,…,T

¿
n, B

Example empirical bootstrap
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Sample with replacement.

Example empirical bootstrap

Example The empirical bootstrap scheme (i.e. using 
~
P=P̂n ) in the case of the clouds data:

> B=1000 

> Tstar=numeric(B)

> for(i in 1:B){

+ xstar=sample(clouds[,1], replace=TRUE)

+ Tstar[i]=mean(xstar) 

+ }

> hist(Tstar) 

> sd(Tstar) 

[1] 125.5883

Example parametric bootstrap

Example The yearly number of sun hours in De Bilt in 1920-1978. We want to es(mate the 

standard devia(on of the sample median. 
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We assume the numbers are normally distributed.

> median(sun) 

[1] 1531 

> mean(sun) 

[1] 1543.797 

> sd(sun) 

[1] 153.9447 

> var(sun) 

[1] 23698.97 

> length(sun) 

[1] 59 

> B=1000 

> Tstar=numeric(B) 

> for(i in 1:B){ 

+     xstar=rnorm(59,1543.797,153.9447) 

+     Tstar[i]=median(xstar)} 

> hist(Tstar)

> sd(Tstar) 

[1] 24.36120

Two types of bootstrap errors

We make es(ma(on errors in the two steps: 

1. Es(mate P  by 
~
P  (and hence, QP  by Q~

P ) 

2. Es(mate Q~
P  by the empirical distribu(on of a sample T

¿
1,… ,T

¿
B  from Q~

P .

The first error is unavoidable. Fipng a wrong parametric distribu(on Pθ  will make this 

error big. It is usually safer to use the empirical es(mate for P . 

The second error depends on B . The larger B , the smaller this error. Usually

B=1000  is sufficient.

Example sun hours (1)

Example  Assume we want to es(mate the var of the sample mean of the sun hours

var ( X́n) . 
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Op0on 1 

Assuming X1 ,…, X59∼N (µ,σ 1)  we’ve es(mated P  by 
1544,13699

P
θ̂
=N ( µ̂ , σ̂1 )=N ¿ ). We 

know from theory that the distribu(on of X́n  is QP=N (µ,σ1/n)   so we don’t need to 

take bootstrap samples X
¿

’s and compute T
¿

’s here!! 

Aker having done the first step,  
~
P=N (µ̂ , σ̂1 )  we can immediately es(mate var ( X́ .) .  

by σ̂
1/n=13699/59=401 .

Op0on 2 

Assuming X1 ,…, X59∼N (µ,σ 1)  we’ve es(mated P  by 
1544,13699

P
θ̂
=N ( µ̂ , σ̂1 )=N ¿ ). We can

s(ll compute the bootstrap samples. Using B=1000  this yields 399 . 

This op(on is really worse than op(on 1 because we es(mate the variance of QP
θ̂

 using a 

sample, while we know the parameters of this normal distribu(on.

Op0on 3 

We don’t assume normality and use the empirical bootstrap scheme 

> var(bootstrap(sun,mean,1000)) 

[1] 380.055 

> var(bootstrap(sun,mean,1000)) 

[1] 425.2614 

> var(bootstrap(sun,mean,10000)) 

[1] 402.4628 

> var(bootstrap(sun,mean,10000)) 

[1] 390.7697 

Part of the varia(on is due to the first bootstrap error.

Summarizing the 3 op(ons: 

1. Parametric "bootstrap" with normal theory (without T
¿

’s) 

2. Parametric bootstrap with bootstrap sampling (with T
¿

’s) 

3. Empirical bootstrap sampling

The first op(on is only possible in special cases. For example, in the example of the sd of the 

sample median, sampling of T
¿

’s was really necessary in a parametric bootstrap set up, 

since the distribu(on of median( X ) is not easily derived from the distribu(on of the

Xi ’s. 

Is op(on 1 or 3 the best? In this case there isn’t much difference. Normality is a liele 

doubMul (SW-test: p=0.08), so the empirical bootstrap es(mator would slightly be preferred.

4.2  Bootstrap conPdence intervals

Set-up: es(mate an unknown parameter θ  by the es(mator T (with unknown 

distribu(on QP ). The accuracy of T can be expressed in terms of 
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 var (T )  or sd (T )   (we’ve seen bootstrap es(mators for this) 

 confidence interval for θ , based on T .

A confidence interval is a correct manner to present the accuracy of the es(mator T. The 

interval is based on the distribu(on QP  of T . Since we don’t know QP , we can use 

the bootstrap es(mate (the empirical distribu(on of a sample from Q~
P ) as an 

approxima(on. 

The confidence interval, before bootstrapping

T  es(mates θ , so we hope that the distribu(on of T−θ  is concentrated around 0. 

Denote the distribu(on of T−θ  by G . 

By the defini(on of quan(les: 

P (G−1 (α )≤T−θ≤G−1 (1−α ) )
¿P (T−θ≤G−1 (1−α ) )−P (T−θ≤G−1 (α ))
≥1−α−α=1−1α

This can be wrieen as:

P(T−G−1(1−α )≤θ≤T−G−1(α ))≥1−1α .

Hence, a (1−1α) confidence interval for θ  is: 

[T−G−1(1−α) , T−G−1(α)] .

In pictures:

The bootstrap confidence interval

 

In confidence interval  
(1−α), T−G−1 ¿

T−G−1 ¿
¿

  unknown  are: 

 G , i.e. the distribu(on of T−θ , 

 QP , i.e. the distribu(on of T , 

 θ , the parameter of interest. 

Hence, es(mate 
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the distribu(on G of Z=T –θ

by the empirical distribu(on of Zi
¿=T i

¿−T ,  i=1,... , B ,

with T1
¿
,…,Tn

¿
 a bootstrap sample (empirical or parametric). 

G
−1(α )  is es(mated by Z

¿
([α B ]) . 

G
−1(1−α )  is es(mated by Z

¿
([(1−α)B ]) .. 

Hence, the unknown interval  [T−G−1(1−α ) , T−G−1(α )]   is es(mated by the 

computable interval 

[T−Z¿

( [(1−α )B] ), T−Z¿
([ α B ] )]

which is equal to 

[1T−T ¿
([(1−α)B ]) ,1T−T ¿

([α B ])]

Because Zi
¿=T i

¿−T .

R: quan%le

In pictures: 

> zstar=tstar-tn 

> c(tn-quantile(zstar,0.975),tn-quantile(zstar,0.025)) 

                      97.5% 2.5% 

-0.1129308 11.3179222 

> 2*tn-quantile(tstar,c(0.975,0.025)) 

          97.5%              2.5% 

-0.1129308 11.3179222

Reliability of a confidence interval

Problem  Several possibili(es to construct confidence intervals (e.g. empirical or parametric 

bootstrap). Which one works best? That really depends on the situa(on (sta(s(c T , 

distribu(on P  of Xi ,   ...). 

Approach  Simulate actual coverage probability of nominal (1−α)  confidence intervals! 

Repeat the following procedure many (e.g. K=1000 ) (mes: 
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1. generate a random sample x1 , ... , xn  according to Pθ , 

2. derive sta(s(c T n , generate bootstrap samples T
¿
1. ,…,T

¿
B , 

3. construct confidence interval as explained before, 

4. is θ  part of the interval? If yes, output: 1, else: 0. 

Number of 1’s divided by K ≈  coverage probability.

4.3 Bootstrap tests

Situa(on Consider a sample X1 ,... , Xn  from an unknown distribu(on P . Suppose we 

want to test the goodness-of-fit hypothesis 

H 0:P∈P0  versus

H 1:P∉P0

for some collec(on of distribu(ons P0 . Use a test sta(s(c T . 

Problem: we don’t know the distribu(on QP  of T  for P∈ P0 . 

We can use a bootstrap test. 

Idea  Es(mate the unknown distribu(on of T   (that is QP ) by the empirical distribu(on

of a sample T
¿
1. ,…,T

¿
B .

Example(1)

Consider the data (histogram and QQ-plot against

exp(1) ).

and the hypotheses 

H 0: X1, ... , Xn∼ exp(λ)    for some λ > 0

H 1: X1, ... , Xn   are not exp distributed

which we want to test using test sta(s(c 

T=
median(X )
mean(X )

We simulate T  under H 0 , because we don’t know the distribu(on of T  under

H 0 .

The distribu(on QP  of T  under H 0 does not depend on λ . Thus, QP  is the 

same regardless which exponen(al distribu(on the Xi  come from. Therefore, T  is 

called nonparametric. 

We simulate the distribu(on QP  of T  using the (parametric) bootstrap scheme: 

 Generate B  (mes a sample X
¿=(X ¿

1 ,…, X
¿
n) from exp(1)  
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 Compute for each sample the value T
¿=
median(X¿)

mean(X¿)

Remark The label bootstrap is actually inappropriate for this test, because we do not use the 

data in the genera(on of the T
¿

’s  (cf. empirical and parametric bootstrap es(ma(on).

> for(i in 1:B) { 

+ xstar=rexp(n) 

+ tstar[i]=median(xstar)/mean(xstar) } 

> median(x)/mean(x) 

[1] 0.5058572 

> p=2*min(sum(tstar<=0.5058572)/B,sum(tstar>=0.5058572)/B) 

> p 

[1] 0.112

H 0  is not rejected, since the (two-sided) p-value is

0.112.

Example(2)

Remember how not to use the Kolmogorov Smirnov test for the composite null hypothesis 

H 0: X1 , ... , Xn N (µ,σ1 )   for some µ  and σ
1

> ks.test(x,pnorm,mean(x),sd(x)) 

This R-command tests the simple  H 0: X1 , ... , Xn N ( X́ , SX1 ) .

The adjusted KS-test sta(s(c 
~
Dn  is informa(ve, and therefore a sensible test sta(s(c. 

However, the reported p-value of 

> ks.test(x,pnorm,mean(x),sd(x)) 

is wrong, since it is based on the blue distribu(on of Dn , whereas it should be based on 

the red distribu(on of 
~
Dn . Using bootstrap tes(ng, one can simulate the red distribu(on 

of 
~
Dn .
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Bootstrap: Warnings

Warning The bootstrap does not always “work” (well)! 

 Typical risk: if you use a parametric bootstrap but sample contains outliers and 

parameter es(mator is sensi(ve ⇒ possibly bad bootstrap es(mates (see exercise 4.1). 

 Extreme order sta(s(cs: the empirical bootstrap usually fails to approximate the 

distribu(on of X (1 )=min (X1 ,…, Xn )  or X (n)=max ( X1 ,…, Xn ) .

 If the distribu(on underlying your sample has heavy tails (e.g. non-existent first 

moment), the empirical bootstrap fails. (It always produces no tails, i.e. light tails.) 

(See Example 4.6 in syllabus with the Cauchy distribu(on).
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Chapter 5

Robust es0mators

Idea Most methods from sta(s(cs are based on assump(ons on the probability distribu(on 

from which the observa(ons originate. Such assump(ons are almost never completely 

correct. It is therefore important to inves(gate how sensi(ve a method is for devia(ons from 

the assump(ons. Sta(s(cal methods which are rela(vely insensi(ve to small devia(ons from 

the model assump(ons are called robust methods.

Robust methods are insensi(ve to small devia(ons from the assump(ons, e.g. 

 large devia(ons from the assump(ons in some observa(ons 

 small devia(ons from the assump(ons in all observa(ons 

 small devia(ons from the assumed (in)dependence structure 

An outlier is a data point that deviates from the other observa(ons, e.g. extremely large or 

extremely small values. In some cases outliers are ‘wrong’ data, from which mistakes are 

easily made. A number of ‘incorrect’ observa(ons up to 10% is not abnormal. 

Some(mes it is possible to iden(fy, or even correct, mistakes by careful screening of the 

data. In general, it is recommended to perform a sta(s(cal data analysis both with and 

without suspect data points and compare the results. Obviously, it is wrong to delete 

observa(ons from a data set just for subjec(ve reasons. A good robust procedure decreases 

the influence of incorrect observa(ons in an objec(ve manner.

5.1 Robust es0mators for loca0on

5.1.1 Trimmed means

So far we have seen the mean and the median as loca(on es(mators. 

The mean is very sensi(ve to outliers, i.e. is not robust. 

The median is very insensi(ve to outliers, i.e. is very robust. 

Both are examples of α -trimmed means:

T n,α=
1

n−1 [αn ]
∑

j=[nα ]+1

n−[αn ]

X( j ) ,0≤α<
1

1

In words: the [αn]  largest and smallest observa(ons are deleted and the average is taken 

over the remaining values. It is clear that outliers have a smaller influence on 

Tn,α  then on X́ , because they are ‘trimmed away’ when Tn,α  is used (if 0≤α<
1

1

).
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X́  is the 0-trimmed mean, whereas the other extreme, the (almost) 
1

1
-trimmed mean 

is close to the median. The median is very robust against the occurrence of outliers. Even 

when almost all observa(ons are extreme, the median is a useful loca(on es(mator.

The concept of loca(on

What do these loca(on es(mators es(mate? 

For independent random variables X1 ,…, Xn  from a distribu(on F  with density f , 

the usual mean X́n  es(mates the popula(on mean

E X=∫ x dF (x)

and the trimmed mean T n,α  es(mates the trimmed popula(on mean

Tα (F )= 1

1−1α
∫
F

−1(α)

F
−1(1−α)

xdF ( x ).

where dF (x)  denotes integra(on with respect to the (con(nuous/discrete) distribu(on 

measure F .

Example: Some trimmed means of distribu(ons

Example: loca(on es(mators

Loca(on es(mators for Newcomb’s data: original set, and altered set (add an extra outlier).

> nnew=c(newcomb,-60) 

> mean(newcomb) > mean(nnew) 

 [1] 26.21212 [1] 24.92537 

 > mean(newcomb,trim=0.1) > mean(nnew,trim=0.1) 

[1] 27.42593 [1] 27.29091

> mean(newcomb,trim=0.2) > mean(nnew,trim=0.2) 

[1] 27.35 [1] 27.2439

> mean(newcomb,trim=0.3) > mean(nnew,trim=0.3) 

[1] 27.25 [1] 27.14815 

> mean(newcomb,trim=0.4) > mean(nnew,trim=0.4) 

[1] 27.28571 [1] 27.2
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> median(newcomb) > median(nnew) 

[1] 27 [1] 27

The mean is very sensi(ve to outliers, trimmed means much less. This influence of outliers 

can be quan(fied in the influence func(on.

Asympto(c influence func(on 

The sensi(vity of the mean for outliers can be quan(fied by an influence func(on (IF). 

Suppose that we have a random sample of n  observa(ons x1 ,…, xn  and that we next 

obtain one addi(onal observa(on of size y . When we calculate the mean for both cases, 

the difference of these means, ‘the influence of an addi(onal observa(on in y’, is: 

xi+ y

∑
i=1

n

¿−
1

n
∑
i=1

n

xi

¿

IF ( y )=
1

n+1
¿

Mul(ply by n+1  and take n→∞  to obtain IF ( y)= y−E X .

The func(on y↦ IF ( y )= y−E X  is the (asympto(c) influence func(on of the mean.

The influence func(on for the mean (lek) and the α-trimmed mean (right).

For the mean the IF is not bounded, whereas for the median the IF is bounded. 

Boundedness of the influence func(on is an important prerequisite for an es(mator to be 

robust. Es(mators with an unbounded IF, like the mean X́ , are not robust. Es(mators 

with a bounded IF are called B-robust; the median is B-robust. (Note, however, that the 

influence of an extreme observa(on is not zero!) All α -trimmed means with α>0 are 

B-robust!

The gross error sensi(vity is equal to 
¿ IF ( y )∨¿

¿
y
¿ . The smaller the gross error sensi(vity, 

the more B-robust the es(mator.

5.1.2. M -es0mators 

 

There are many other robust measures for loca(on. An important class of such measures is 

formed by the so-called M -es0mators. An M -es(mator can be regarded as a 
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generaliza(on of a maximum likelihood es(mator. For a given func(on ρ , the M -

es(mator Mn  can be defined as the value of Mn that maximizes the expression

∏
i=1

n

ρ(Xi−Mn)

Most of the (me an M -es(mator Mn is not computed as the solu(on of a 

maximiza(on problem, but as the solu(on of an equa(on of the form

ψ (¿Xi−Mn)=0

∑
i=1

n

¿

for some func(on ψ . 

When ψ ( x )=x , then Mn=X́n , ML es(mator for normal distribu(on. 

When ψ ( x )=sign(x) , then Mn=median (X ) , ML es(mator for Laplace distribu(on. 

The influence func(on of an M -es(mator is equal to:

∫ψ '(x−¿Tψ (F ))dF (x)

IF ( y , F )=
ψ ( y−Tψ (F ) )

¿

and has the same shape as the func(on ψ . Hence, to obtain a B-robust M -es(mator it

is sufficient to choose a bounded func(on ψ . In other words, bounded ψ  -func(ons 

yield B-robust loca(on es(mators.

IFs for some ψ  -func(ons (that yield ML es(mator for denoted distribu(on).
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