VU University	Statistical Data Analysis
Faculty of Sciences	28 May 2014

SOLUTION

PART 1

Question 1 [6 points]

- a. [2 points] Location: minimum ≈ 0 , maximum ≈ 8.8 , median ≈ 1.4 , IQR ≈ 2.2 , data are skewed to the right, and the sample contains two high extremes (around 7.0 and 8.8).
- b. [2 points] The QQ-plot against the exponential distribution shows the most straight line, and therefore that location-scale family is most appropriate.
- c. [2 point] Fitting a line by hand in the QQ-plot yields approximately y = 0 + 2x, so location a = 0 and scale b = 2. Since we chose the exponential distribution this corresponds to the Exp(1/2) distribution.

Question 2 [5 points]

- a. [1 point] The given expression is correct.
- b. [2 points] Under the null hypothesis the test statistic has approximately a χ^2 -distribution with k-1 degrees of freedom. This approximation is reliable if $np_i \geq 5$ for $i=1,\ldots,k$. In other words: the expected number of observations under the null hypothesis has to be at least 5 in all intervals.
- c. [2 point] One could you the one sample Kolmogorov–Smirnov test, which is also a goodness-of-fit test for a simple null hypothesis.

Question 3 [7 points]

- a. [3 points] Given a sample $Z_1, \ldots Z_n \sim P$ the empirical bootstrap estimate of the **distribution** Q_P of $T_{n,\alpha}$ is found as follows:
 - Estimate P by \hat{P}_n the empirical distribution of the sample, and, hence, Q_P by $Q_{\hat{P}}$
 - Estimate $Q_{\hat{P}}$ by the empirical distribution of a sample $T_1^*, \dots T_B^*$ from it

In computational steps this scheme equals:

- Generate B times a sample $Z_1^*, \ldots Z_n^*$ by resampling with replacement from the initial sample $Z_1, \ldots Z_n$.

- Generate for each Z^* -sample $T^* = T_{n,\alpha}(Z_1^*, \dots Z_n^*)$. This yields the bootstrap values $T_1^*, \dots T_B^*$.

The bootstrap estimate of the **standard deviation** of $T_{n,\alpha}$ is found in both schemes by the last step:

- Estimate the sd of $T_{n,\alpha}$ by the sd of the bootstrap values $T_1^*, \dots T_B^*$.
- b. [2 points] Since the data are skewed to the right, the mean (0% trim) is larger than the median (50% trim). Since the data is monotonically skewed, it follows that $T_{n,\alpha}$ decreases when α increases. Since the α_2 -trimmed mean is lower than the α_1 -trimmed mean it follows that $\alpha_1 < \alpha_2$.
- c. [2 points] The formula for the bootstrap confidence interval is $[2T T^*_{\lfloor (1-\alpha_1)B}, 2T T^*_{\lfloor \alpha_1 B \rfloor}]$, which equals [2*0.7 1.16, 2*0.7 0.45] = [0.24, 0.95].

PART 2

Question 4 [6 points]

- a. [2 points] Incorrect. The distribution of the KS test statistic need not be normal if the data is from a normal distribution. In general, one uses bootstrap methods to mimic the distribution of a statistic because it is unknown (and certainly not normal).
- b. [2 points] Correct. Hat values only show that an observation is potentially influential, whereas Cook's distances show the real influence.
- c. [2 points] Correct. The a.r.e. of the Wilcoxon signed rank test to the sign test is 3/4 which is lower than 1. So the Wilcoxon signed rank test needs more data to obtain the same power as the sign test. In other words: the sign test has higher power.

Question 5 [5 points]

- a. [4 points]
 - sign test: not suitable since the sign test is for testing the underlying median of ONE sample.
 - Wilcoxon two sample (rank sum) test: suitable.
 - Kendall's rank correlation test: not suitable, since a rank correlation test is testing dependence in paired samples.
 - Kolmogorov-Smirnov two sample test: suitable
- b. [1 point] Since the Wilcoxon rank sum test is best suited for shift alternatives, it is expected not to have much power in this situation, because the biggest difference between x and y is in scale. The Kolmogorov–Smirnov test is suited for any differences between underlying distributions and is expected to have higher power in this situation.

Question 6 [7 points]

- a. [3 points] This concerns one multinomial sample of size n=20. The underlying distribution is multinomial $(20, p_{11}, p_{12}, p_{21}, p_{22})$ with $p_{11} + p_{12} + p_{21} + p_{22} = 1$. The null hypothesis of independence between handedness and having voted is $H_0: p_{ij} = p_{i\cdot}p_{\cdot j}$ with $p_{i\cdot} = pi1 + p_{i2}$ and $p_{\cdot j} = p1j + p_{2j}$.
- b. [3 point] Fisher's exact test uses N_{11} as test statistic which has under the given H_0 a hypergeometric distribution with $n=20,\ l=7,$ m=2. Since the observed count in cel (1,1) equals 0 the left p-value equals

 $P(X=0) = \frac{\binom{2}{0}\binom{18}{7}}{\binom{20}{7}} = 0.41.$

This one-sided p-value is bigger than any realistic significance level, so H_0 is not rejected. Alternative, one may use $n=20,\ l=2,\ m=7$ and

 $P(X=0) = \frac{\binom{7}{0}\binom{13}{2}}{\binom{20}{2}} = 0.41.$

c. [1 point] The rule of thumb is: $EN_{ij} > 1$ for all i,j and $EN_{ij} > 5$ for at least 80% of the cells. Here we have $EN_{11} = 2 \times 7/20 = 14/20 < 1$ so the rule of thumb does not hold. The chi-square test is therefore not applicable for these data.

Question 7 [9 points]

a. [3 points] The multiple linear regression model is:

$$Y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_p x_{ip} + e_i$$

with

 $Y_i - i^{th}$ observed response value

 β_0, \dots, β_p – unknown parameters

 x_{i1}, \dots, x_{ip} — measured explanatory variables for i^{th} observation

 e_i – error in i^{th} observation

The assumption on the errors is $e_i \sim \mathcal{N}(0, \sigma^2)$ i.i.d. with $\sigma^2 > 0$ the unknown error variance.

- b. [3 points]
 - **linearity** from scatter plots (Y, X_j) for j = 1, ..., p and added variable plots
 - independence of errors from context
 - **normality of errors** from QQ-plot of residuals \hat{e} against the normal distribution
 - constant error variance from scatter plots $(Y, \hat{e}), (\hat{Y}, \hat{e})$
- c. [3 points] The main problem to expect is collinearity. Apart from that there may be some influence points because of outliers in the Armed.Forces values. Remedies for collinearity: scale the design matrix, compute variation inflation factors, condition indices and variance decompositions, and based on this information take a selection of the collinear explanatory variables. Remedies for the influence points: compute hat values and Cook's distances.

3