

Vrije Universiteit, Department of Computer Science

Examination paper for Software Testing -SOLUTIONS

31 March 2017 12:00-14:45 MF-FG2

This is a closed book written exam.

No printed material or electronic devices are admitted for use during the exam.

The answers have to be given in English.

Both homework and exam are compulsory and graded on a 1 to 10 scale.

The exam grade is calculated as ((Q1+Q2+Q3+Q4+Q5)*0.9/0.8 +10)/10.

The final grade is calculated as 0.6*homework + 0.4*exam

A pass is given only if both homework and exam components are >= 5.5

Q1

(concepts

)

Q2 Q3 Q4 Q5

(code)


Qi

Maximum

credits

a) 3 9 9 9 3

b) 3 5

c) 3 3

d) 3 3

e) 7 7

f) 7 3

g) 3

Total 26 9 9 9 27 80 10

Q1. Concepts [26p]

a. Define the terms ON and OFF point. Give an example. [3p]
b. What is the difference between a verification of a SRS and its

validation? [3p]
c. Define the terms safety and reliability and show that they don’t

mean always the same. [3p]
d. Define the term Product Risk Matrix and explain its role in

testing. [3p]
e. Consider the heater control system built for a neonatal

incubator, a rigid box-like enclosure in which a premature born
baby can be kept in a controlled environment, for observation

and care. The goal is to keep the baby’s temperature at 37°C ±
0.1 °C. Apply the first step of STAMP analysis to this heating

control system. Identify one possible accident. Draw a simple

control structure for this system. Identify based on this control
structure some unsafe control actions. [7p]

f. Explain what symbolic execution is and show how it can be used
to generate test inputs for this program: [7p]

a) these are concepts used in domain testing . An ON points is always on a
boundary, an OFF point is close to the boundary, but outside the domain if
the boundary is closed and inside the domain if the boundary is open
(COOOOI rule). Examples, for x<10, an ON point is x=10 and an OFF
point is 9 (open boundary, inside the domain).

b) Verification of a SRS checks this document for properties such as
complete, clear, consistent, testable, not ambiguous, etc and validation
means to ask the user if this is what he really wishes.

c) Safety is freedom of accidents. Reliability is the probability that a system
will function as expected in a period of time and in a certain environment.
They don’t mean the same. A reliable system may be not safe – hairdryer
in a bathtub, and for example an emergency shut down of a nuclear plant
that do not follow the legal procedures is safe but not reliable.

d) a product risk matrix is a graph that has risk likehood on one axis and the
impact on the other. All functionalities get a point in this graph. The matrix
It helps to prioritize testing under time pressure.

e) Accident: Baby dies because overheating or underheating.

The control action is Send ON and OFF signals. For this control

action we build a table for unsafe control actions.

Control
action

The control action is not
given

An incorrect control
action is given

The control action is
given at the wrong
time or wrong order

The control action
is stopped too soon
or applied too long

Send On
and OFF
signals

No ON command is given
to heater when the temp
is lower than 36.9C
No OFF command is given
when the temperature is
higher than 37.1C.

Heater is turned ON when
the temperature is
already 37.1 C and rising

Heater is turned OFF
when temperature is
36.9C.

Heater is turned ON
long after it was
necessary

Heater is turned OFF
long after it was
necessary

f).
Symbolic execution is a program analysis technique that
executes programs with symbolic rather than concrete
inputs
It maintains a path condition or constraint (PC) that is
updated whenever a branch instruction is executed, to
encode the constraints on the inputs that reach that
program point. The flow graph and a possible set of test
cases are shown below.

Testing from requirements Q2-Q4 [27p]

Q2. [9p]

Consider the following requirement:

[FR 1] The system shall allow shipments for which the price

is less than or equal to €200.

Design and generate test cases to defensively test this requirement,
by using equivalence partitioning (EP) and boundary value analysis

(BVA). Justify your test cases specifications and minimize your test
cases.

First we need to make some assumptions. The price is >=0. the
increment is 1 euro.

EP will give us a few equivalence classes:

EP1: price < 0 invalid class IC
EP2: price >= 0 and price <=200. valid class VC

EP3: price > 200. invalid class IC

EP4: not a number : IC

EP5: empty string : IC

BVA will add some test cases such as min, min+1, nom, max-1, max.
This is a reasonable set of test cases:

ID Input specification expected

output

TC1 -50 EP1 not allowed

TC2 -1 EP1+BVA not allowed

TC3 0 EP1+BVA allowed

TC4 1 EP2+BVA allowed

TC5 100 EP2+BVA allowed

TC6 199 EP2+BVA allowed

TC7 200 EP2+BVA allowed

TC8 201 EP3+BVA not allowed

TC9 500 EP3 not allowed

TC10 QWERT EP4 not allowed

TC11 “ “ EP5 not allowed

Q3. [9p]

A control system has to count the amount of money dropped into a
vending machine. Only 5 and 10 cent coins are accepted. The correct,

recognized sum is 25 cents.
a) Model this system with a state transition diagram.

b) Generate test cases from this diagram. Argument your approach.

We chose for 100% transition coverage and we obtain the

following test cases.

TC1. Start state: Start. Input 5 cents, 10 cents, 10 cents.
Expected state Stop.

TC2. Start state: start. Input 5-5-5-5-5. Expected state: Stop.
TC3. Start state: Start. Input 10-10-5. Expected state : Stop.

Q4. [9p]

Given the preferences menu shown below.

a) Identify the inputs. How many test cases do you need to
exhaustively test this menu?

b) Design test cases using a pairwise combinatorial model. You
should use a suitable orthogonal array from the list in the

appendix.

a) we have the following inputs (factors)
show minitool: with 2 values (levels)

enable live preview: with 2 values
color scheme. with 3 possible values:

In total we need 2 x 2 x 3 = 12 possible inputs for exhaustive testing.
b) we take the 3^ 4 array, that uses 4 inputs that can have 3 possible

values. We don’t use it all. We use only the first 3 columns because we
have only 3 inputs. We map the 3 columns to the 3 inputs.

SEC

000
012

021
102

111

120
201

210
222

S and E do not need the value 2. Instead we use one of the two

possible values, true of false. We map the problem to the OA as
follows:

Show: 0 hidden, 1 visible, 2 does not care
Enable: 0 enable 1 disable 2 does not care

Color scheme: 0- Blue 1-Silver 2- Black

SEC
012

0x1

102
111

1x0
x01

x10
xx2

SEC

012
011

102
111

100

101

010
012

Depending on how we fill this x, we can discard the redundant lines.

A possible test suite is:

ID Show Enable Colour scheme

TC1 0 1 2 Black

TC2 0 1 1 Blue

TC3 1 0 2 Black

TC4 1 1 1 Silver

TC5 1 0 0 Blue

TC6 1 0 1 Silver

TC7 0 1 0 Blue

Q5. Code based testing [27p]

For this pseudocode snippet:

1. Read Weight (w)
2. Read Height (h)
3. IF w > 400 THEN
4. Print “invalid weight”
5. ENDIF
6. If h > 3 THEN
7. Print “invalid height”
8. ENDIF
9. BMI=w/(h*h)
10. Print (“BMI = “ BMI)
11. IF BMI < 20 THEN
12. Print “underweight”
13. ELSE
14. IF BMI >= 20 AND BMI <=25 THEN
15. Print “ideal weight”
16. ELSE
17. IF BMI > 25 THEN
18. Print “overweight”
19. ENDIF

a) Draw the control flow graph. [3p]

b) Generate a test suite that achieves 100% statement coverage. [5p]
c) Enhance if necessary your test cases from b) to achieve 100%

decision coverage. [3p]
d) Draw a data flow graph. [3p]

e) Generate a test suite that is adequate with respect to the all–uses

criterion. [7p]
f) Generate a mutant and show a test case that will kill it. [3p]

g) Generate an equivalent mutant. [3p]

a) CFG

b). these 3 test cases will cover all statements

 w h expected
output

TC1 500 5 invalid w,
invalid h, 20,
ideal weight

TC2 50 2 12.5
underweight

TC3 120 1,5 53.3 ideal
weight

c) these 2 TC cover all the decisions
d)The data flow graph.

e)

variable defined in c-use p-use

w A F {BC,BD}

h A F {DE, DF}

BMI F G {HI, HJ},
{JK,JL}
{LM,LN}

The test cases from b) will cover all uses.

 w h expected
output

path

TC1 500 5 invalid w,
invalid h, 20,
ideal weight

ABCDEFGHJKN

TC2 50 2 12.5
underweight

ABDFGHIN

TC3 120 1,5 53.3 ideal
weight

ABDFGHLMN

f) Many mutants are possible. for example in line 11. If BMI >20.
g) an equivalent mutant cannot be killed because it is semantically the same

as the original code. For example in line17. If BMI>=25 instead of if
BMI>25.

Appendix. A list with 3 orthogonal arrays.

