
Vrije Universiteit, Department of Computer Science

Examination paper for Software Testing-SOLUTIONS
27 March 2014 15:15-18:30

This is a closed book written exam.

No printed material or electronic devices are admitted for use during the exam.

The answers have to be given in English or Dutch.

Both homework and exam are compulsory and graded on an 1 to 10 scale.

The exam grade is calculated as (Q1+Q2+Q3+Q4+Q5 +10)/10.

The final grade is calculated as 0.5*homework + 0.5*exam

A pass is given if both homework and exam components are >= 5.5.

Good luck!

Q1 Q2 Q3 Q4 Q5
(code)


Qi

Maximum
credits=
(Qi+10)/10

a) 5 5 3
b) 5 7 5
c) 5 3
d) 5 8
e) 5 5
f) 5
Total 30 12 12 12 24 90 10

Q1. Concepts [30p]

a. Give an example of a test adequacy criterion and explain its role in
software testing. [5p]

b. What is an equivalent mutant? Give an example. [5p]
c. Explain the essence of combinatorial testing: why it can be applied and

how ? [5p]
d. How does risk-based testing work? [5p]
e. Compare Agile/scrum testing with traditional waterfall testing. [5p]
f. Safety critical software needs a special kind of testing, regulated by

standards. Enumerate a few special requirements imposed on testing by
these standards. [5p]

Solutions:
a) A test adequacy criterion can say something about how good a test

suite is. For example the decision (or branch) coverage criterion. We
can say: A test suite T is good for the program P when it covers 100%
of all decision blocks in the control flow graph of P. Its role is twofold: it
can guide test case generation by enhancing an existing test suite until
the criterion is satisfied and it can help deciding when to stop testing.

b) An equivalent mutant is a slightly modified program that semantically is
the same as the original program. As a consequence, an equivalent
mutant can never be killed. An example can be:

c) Combinatorial testing is a model-based test generation technique
based on input modeling. It tries to reduce the explosive number of
combinations of inputs by considering only t-way interactions of inputs
where t = 2,3,..6. The justification is based on a research of NIST that
applied data mining on all failures of medical devices, networks
security vulnerabilities, etc during past ten years and concluded that

failures happened only as a result of an interaction between t variables,
where t is no more than 6. Very often pairwise testing (t=2) is enough.
There are mathematical tools like orthogonal arrays and even
automatic tools that given the input variable sand their discrete values
can generate all possible t-way combinations that serve as input to test
cases. There is no oracle and no expected output. The user has to
generate this by hand.

d) Testing based on risk prioritize software modules or functions based on
the risk. Risk is calculated as a product between the probability of
occurrence and impact. Modules with high risk are tested more
thoroughly.

e) Both waterfall and agile processes have quality as a goal. But in agile testing
the users are involved earlier , testing is the responsibility of the team, all
test levels are tested at once and communication is more important than
documentation.

f) Here all kind of regulations stated by standards have to be mentioned.
For example some techniques are especially required like: inspections,
MC/DC coverage (required by DO 178b for aviation) or 100%
requirements, statement or decision coverage, combinatorial testing n-
way with n>3, formal verification of the design, peer reviews, fault tree
analysis, probabilistic testing, all bugs have to be traceable,
programmers that make 3 bugs are dismissed, simulations, compiler
certification, verification of safety-behaviour during degraded and
failure conditions, logging, avalanche testing, etc.

Testing from requirements Q2-Q4 [36p]

Q2. [12p]

Consider these requirements for a student examination grading module:

If the student scores 0 to less than 50 then assign D Grade, if the student scores
between 50 to 69 then assign C Grade, if the student scores between 70 to 84
then assign B Grade, and if the student scores 85 to 100 then assign A Grade.

Generate test cases using equivalence partitioning combined with boundary
value analysis for a by-contract testing of this module.

Solution:

The input variable is score.
The equivalence relation that will induce a partition of the input domain is in this
case “A and B are in the same class if they generate the same output”. We

identify 4 classes. Because it is required to perform by-contract testing we will
limit ourselves to only valid inputs.
VC1: 0<=score <=49 , expected output is D
VC2: 50<=score<=69, expected output is C
VC3:70<=score<=84, expected output is B
VC4: 85<=score<=100, expected output is A

BVA will require for each class to test for 5 elements: the boundaries, off by one
inside the domain near the boundaries and one element in the middle.
We make the assumption that the precision of the grades is 1. For example for
VC1 we will test the following inputs: 0,1, 20, 48 and 49.

Test design specification:
 Assumption:

Grades are only between 0 and 100 boundaries included
the lowest grade increment is 1

type Description Tag BT (belongs to)
VC 0<=score <=49 1
VB Score = lower boundary 1.1 1
VB Score = lower boundary+1 1.2 1
VB Score = middle 1.3 1
VB Score = high -1 1.4 1
VB Score = high boundary 1.5 1
VC 50<=score<=69 2
VB Score = lower boundary 2.1 2

Etc

We obtain the following low- level test cases:

Tag Test case ID score Expected output
1.1 TC1 0 D
1.2 TC2 1 D
1.3 TC3 20 D
1.4 TC4 48 D
1.5 TC5 49 D
2.1 TC6 50 C
2.2 TC7 51 C
2.3 TC8 60 C
2.4 TC9 68 C
2.5 TC10 69 C
3.1 TC11 70 B
3.2 TC12 71 B
3.3 TC13 78 B
3.4 TC14 83 B
3.5 TC15 84 B
4.1 TC16 85 A
4.2 TC17 86 A
4.3 TC18 90 A
4.4 TC19 99 A
4.5 TC20 100 A

Q3. [12p]

For a banking software, we want to test a small method, called
validate_withdraw. This method has to decide whether a withdraw amount,
required by the user, will be approved or rejected. A withdraw amount will be
approved only if the user has an account that is currently open, it has enough
money in it and the current balance left after withdrawal is still more than 100
euro. Both balance and amount have to be positive and cannot exceed 1000000
euros. If any of these conditions is not satisfied, the withdrawal will be rejected

Generate test cases for 1x1 domain testing of these requirements.

Solution:

 We have the following inputs: account_state (open/not open), balance and
amount. The output is rejected or approved.

We draw the domain for amount and balance and we eliminate some boundaries.
We apply COO OOI rule to decide the OFF point that has to be tested.

The boundaries of the input domain and their ON and OFF points are :

balance > 100 border open ON point: balance =100, Off point: balance inside domain
balance<=1000000 border closed, ON point : balance = 1000000, OFF point: outside
0<amount border open, ON point: amount = 0, OFF point: amount inside the domain
balance – amount > 100 border open ON point: balance-amount = 100 OFF point balance –
amount inside the domain > 100
account is open ON point = true , OFF point = false, typical in point = true

Q4. [12p]

These are the requirements for an application that implements an alarm clock:

The user can set the time for alarm to go off.
The user can turn the alarm on or off.
The user can snooze the alarm.
When the clock arrives at the time set for the alarm to ring, then the alarm will
ring.

a) Draw a state transition diagram to model this behavior [5p]
b) Apply model based test generation from this state transition diagram [7p].

Variable Condition TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 TC12

 balance > 100 ON 100 100

 OFF 101 101

 balance<=1000000 ON 10000000

 OFF 10000001

 Typical in 50000 1000 2000 40000 60000 3000

amount 0<amount ON 0

 OFF 1

 Typical in 5 10

amount < balance -100 ON 1900

 OFF 39 89 9

 Typical in -1 0.5 10000 300 300 50

account Is open ON True

 OFF False

 Typical in True True True True True True True True True True

 Expected output R R R A A A R A R A A R

Solution:

a) This the state transityions diagram that models the
behaviour

b) From this model, we generate test cases that satisfy 100% transition
coverage.

ID Current
State

Event Action Next State

TC1 Unarmed Set_time Unarmed
TC2 Unarmed Alarm_ON Start

Timer
Armed

TC3 Armed Alarm_off Unarmed
TC4 Armed Time

matches
stop timer Ringing

TC5 Ringing Alarm_off Unarmed
TC6 Ringing Snooze Start timer Snooze
TC7 Snooze After 10min Ringing

TC8 Snooze Alarm_off Unarmed

Q5. Code based testing [24p]

Below is a code snippet that computes the greatest common divisor of two natural
numbers by Euclid’s algorithm

public class Euclid {
 static int gcd(int m, int n) {
 while (m != n) {
 if (m > n) {
 m -= n;
 } else {
 n -= m;
 }
 }

 return m;
 }

For this code snippet:
a) Draw the control flow graph. [3p]
b) Generate a test suite that achieves 100% statement coverage. [5p]
c) Enhance your test cases from b) to achieve 100% decision coverage. [3p]
d) Generate a test suite that is adequate with respect to the all-uses criterion [8p]
e) Generate a mutant and show a test case that will kill it. [5p]

a)

b) TC1: m=3, n=3, Expected output : 3
 TC2: m=12 n = 9 expected output : 3
These 2 test cases will cover all statements.

c)The test suite from a) covers also all decisions
d)
variable Defined in c-use p-use
m 1 {5,4,6} {(2,3),(2,6),(3,5),(3,4)}
m 5 {5,4,6} {(2,3),(2,6),(3,5),(3,4)}}
n 1 {5,4} {(2,3),(2,6),(3,5),(3,4)}
n 4 {5,4} {(2,3),(2,6),(3,5),(3,4)}

Paths that cover all c–uses for m:
1-2-3-5
1-2-3-4
1-2-6
5-2-3-5
5-2-3-4
5-2-6

Paths for all p-uses for m:
1-2-3
1-2-6
1-2-3-5

1-2-3-4
5-2-3
5-2-6
5-2-3-5
5-2-3-4

Paths that cover all c-uses for variable n:
1-2-3-5
1-2-3-4
4-2-3-5
4-2-3-4

Paths that cover all p-uses for variable n:
1-2-3
1-2-6
1-2-3-5
1-2-3-4
4-2-3
4-2-6
4-2-3-5
4-2-3-4

We notice that for example 5-2-3-5 is not covered by the test suite from b).we
need a test case to cycle two time through the left loop.
TC3: m=12 n =3 expected output: 3
Also 5-2-6 is not covered. We need an extra test case:
TC4: m=12 n=6 expected output : 6
Also 4-2-3-5 Is not covered so we need another extra test case:
TC5: m=15, n=25, expected output: 5

e)A possible mutant is if (m<n) instead of if (m>n). TC2 will kill it. The program
will never end and the output will be definitely not the expected one.

