
Vrije Universiteit, Department of Computer Science

Examination paper for Software Testing
28 May 2013 15:15-18:30 KC159

This is a closed book written exam.

No printed material or electronic devices are admitted for use during the exam.

The answers have to be given in English or Dutch.

Both homework and exam are compulsory and graded on a 1 to 10 scale.

The exam grade is calculated as (Q1+Q2+Q3+Q4+Q5 +10)/10.

The final grade is calculated as 0.5*homework + 0.5*exam

A pass is given if both homework and exam components are >= 5.5.

Good luck!

Q1 Q2 Q3 Q4 Q5
(code)


Qi

Maximum
credits=
(Qi+10)/10

a) 3 3 3
b) 5 9 5
c) 3 8
d) 3 5
e) 3 3
f) 7
g) 6
Total 30 12 12 12 24 90 10

Q1. Concepts [30p]

a. What is a latent fault? Give an example [3p]
b. Define defect density. Why is defect density useful in testing? [5p]
c. What is a test adequacy criterion? Give an example. [3p]
d. What is the difference between verification and validation? [3p]
e. Why is it important to link test cases with requirements ? [3p]
f. What means regression testing? Enumerate a few regression testing

techniques and explain in one sentence how do they work [7p]
g. Safety critical software needs a special kind of testing, regulated by

standards. Enumerate a few special procedures that have to be applied
when testing safety critical software. [6p]

Solutions

a). A latent fault is a fault that did not produced a failure yet. example :millennium bug
b) Defect density is a metric defined as the ratio of number of faults to the size of the tested
software component, usually faults/KLOC . it is useful to be monitored in order to estimate when
to stop testing (when defect density drops under a certain value), to determine high-risk
components that will require more attention in future projects, is a good metric to compare
different testing techniques.
c)A test adequacy criterion can decide if a test suite is good or not. Given a program P and a test
suite T, a test adequacy criterion is a predicate that is true (satisfied) or false (not satisfied) of a
<P,T> pair. Example: all decision coverage criterion for white box testing.
d) Verification compares the end products of a development phase with the end documents from
the previous phase (“Are we building the system right?”, while validation compares these
products with the user’s requirements and wishes (“Are we building the right system?”).
e) it is important in the test case design to make a link to the requirements using tags because we
need to know for example how many requirements have been already tested. We also want
sometimes to trace a failed test case to the requirement it is related to.
f)regression testing checks if the correction of a bug or changes needed to add extra functionality
do not affect the quality of the program. The problem is to decide which tests to run again. the
options are: test all, modification transversal , test minimization, test prioritization.
g) Here all kind of standard regulations have to be mentioned.
For example some techniques are required such as: inspections, MC/DC coverage (required by
DO 178b standard for aviation) or at least 100% decision coverage, combinatorial testing n-way
with n>3, formal verification of the design, peer reviews, fault tree analysis, probabilistic testing,
all bugs have to be traceable, programmers that make 3 bugs are dismissed, simulations,
compiler certification, verify safety-behaviour during degraded and failure conditions, logging,
avalanche testing, etc.

Testing from requirements Q2-Q4 [36p]

Q2. [12p]

You have to test the validity of the birthday input in a GUI. The user has to enter
his date of birth by filling 3 separate text fields : month (mm), day (dd) and year
(yyyy). A year is valid if it is between 1812 and 2013.
Generate test cases you think will appropriately test this Birthday input. The
output of each test case should be Valid or Invalid. Explain your strategy.

Solution:
We identify 3 input variables: month, day and year.
Because the valid inputs are ranges we chose for equivalence partitioning (EP).
We add first more requirements based on our calendar knowledge.
month is an integer, 1<=month<=12
and
day is an integer, 1=<day<=31.

We can apply a simple EP.

The valid equivalence classes are:

M1= {month: 1 <= month <= 12}
D1 = {day: 1 <=day<=31}
Y1= {year: 1812 <= year <= 2013}

And the invalid equivalence classes are:

M2 = {month : month < 1}
M3 = {month : month > 12}
D2 = {day : day < 1}
D3 = {day : day > 31}
Y2 = {year: year < 1812}
Y3 = {year : year > 2013}

Test case specification:
We can make the single fault assumption and generate this set of test cases:
TC1. All variables are in valid classes: Output: valid
TC2-TC3. Month is in invalid class, Day and Year are valid: Output: invalid
TC4-TC5. Day is invalid, Month and Year are valid: output: invalid
TC6-TC7: Year is invalid, month and day are valid, Output: invalid

Test
Case
ID

Month
(mm)

Day
(dd)

Year
(yyyy)

Expected Output

TC1 5 15 1912 Valid

TC 2 -1 20 1912 Invalid Value of Month,

TC 3 13 5 1912 Invalid Value of Month,

TC 4 6 -1 1912 Invalid Value of Day,

TC 5 8 32 1912 Invalid Value of Day,

TC 6 7 18 1810 Invalid Value of Year,

 TC7 3 8 2015 Invalid Value of Year

This is a minimal solution. Of course we can extend this test suite with more
classes with 30 and 31 days, with boundary value analysis, defensive testing of
not numbers or some special value testing: February 28 and 29 and leap year.
Extra points will be given for any of these extensions.

Q3. [12p]

Admission to Stateless University is made by considering a combination of high
school grades (GPA) and ACT test scores. The entry requirements are:
ACT <= 36, GPA <=5, 10GPA+ACT >= 71.

a) Draw the valid input domain. [3p]
b) Generate test cases to test these requirements using 1x1 domain analysis

process.[9p]

For the OFF points the COOOOI rule has to be used.
GPA <=5.0 ON point GPA = 5, OFF point : closed border then outside the
domain for example GPA= 5.1

The 1x1 domain testing matrix

 Variable
TC
1

TC
2

TC
3

TC
4

TC
5

TC
6

GPA GPA <= 5.0 ON 5

 OFF 5.1

 Typical In 4.7 4.8 4.8 4.6

ACT ACT <= 36.0 ON 36

 OFF 37

 ACT>=71-10*GPA ON 23

 OFF 24

 Typical in 34 33

Expected
result y n y n y n

Q4. [12p]

A company has the following policy for handling orders:
“All orders of non-Star clients with bad credit should be rejected.
If there is enough product in stock then the order should be accepted, otherwise
order will be put in waiting list.”

Design test cases using a decision table to test this policy.

Solution:

We can identify the following conditions:
Good credit (Yes/No)
Star client (Yes/No)
Stock sufficient (Yes/No)
an the following actions:

Accept, reject, waiting list
The decision table:

Conditions Good

credit
Yes Yes Yes Yes No No No No

 Star
client

Yes Yes No No Yes Yes No No

 Stock
sufficient

Yes No Yes No Yes No Yes No

Actions
 Accept x x x
 Wait x x x
 Reject x x

Each column is a test case.
The table can be simplified by reducing the redundant rules

Conditions Good

credit
Yes Yes No No No

 Star
client

- - Yes Yes No

 Stock
sufficient

Yes No Yes No -

Actions
 Accept x x
 Wait x x
 Reject x

Q5. Code based testing [24p]

Given the following Java method to collapse adjacent newline characters, taken
from the Apache project:

public static String collapseNewlines (String argStr)
 {
 char last = argStr.charAt(0);
 StringBuffer argBuf = new StringBuffer();

 for (int cldx = 0; cldx < argStr.length();cldx++)
 {
 char ch=argStr.charAt(cldx);
 if(ch != '\n' || last != '\n')
 {
 argBuf.append(ch);
 last=ch;
 }
 }
 return argBuf.toString();
 }

a) Draw the control flow graph [3p]
b) Generate a test suite that achieves 100% statement coverage. [5p]
c) Generate a test suite that is adequate with respect to the all-uses criterion [8p]
d) Generate a mutant and show a test case that will kill it. [5p]
e) Generate a mutant that will never be killed [3p]

a) the control flow graph
b) For example the test case :
input : “ab” output : “ab” will cover all the statements
c)First we summarize in a table all variables and the nodes where they are
defined and used
variable def in node c-used in

node
p=used in
node

argstr 0 1, 4 3 (3-4,3-8)
last 1

6
 5 (5-6,5-7)

5 (5-6,5-7)

argBuf 1
6

6,8
6,8

cldx 2
7

7,4 3(3-4, 3-8)
3(3-4, 3-8)

ch 4 6 5(5-6,5-7)

The paths that cover all the c-use and p-uses are:
0-1-2-3-8
0-1-2-3-4-5-7-3-8
0-1-2-3-4-5-6-7-3-8
0-1-2-3-4-5-6-7-3-4-5-7-3-8

ID input : argstr expected output path
TC1 “” “” 1-2-3-8
TC2 “\n” “” 1-2-3-4-5-7-3-8
TC3 “a” “a” 1-2-3-4-5-6-7-3-8
TC4 “\n\na” “a” 1-2-3-4-5-6-7-3-4-

5-7-3-8

c) A mutant is for example:
if(ch = '\n' || last != '\n')

TC4 will kill it because the output will be “\na”

d) an equivalent mutant that will never be killed is :

for (int cldx = 0; cldx != argStr.length();cldx++)

