
Software Engineering (400071) – written exam
Schema solution

Q1: Life cycle models
a) Waterfall (strict order, never come back; each phase’s output is input for the

next phase); evolutionary prototyping (subset of requirements to implement,
interact with user), incremental development (identify all requirements at
first then implement increments).

b) See slides
c) Waterfall (each phase one spiral); evolutionary (“II Risk resolution” means

to produce a prototype/feasibility study, and then validate the prototype,
incremental development (each spiral covers waterfall model in III
Development).

d) Motivate your choice as based on the problem description!! E.g., for the EES
throw-away prototyping could provide the first version of the GUI to test
usability with end-users; waterfall model could be used as requirements are
well understood and system is not likely to undergo fast changes.

Determine
goals

Risk
resolution

Plan next
phase

Development

Prototyping

Progress through
steps

Prototype
validation

P1 P2
…anal.

risk analysis

…

def. risksplan req.
eng.

determine
goals

req. V&V… design

design V&V

implem.

unit test

sys
test

integration
accept.
test

req.

Software Engineering (400071) – written exam
Schema solution

Q2: Requirements engineering
a) Functional requirements:

 Moscow List:
Order Name UC Motivation
Must have Vote (elector) …
Must have Authenticate (all users) …
Must have Access results (final, system

manager)
…

Must have Calculate results (final) Application logic
Should have Monitor progress (in progress,

system manager)

Should have Calculate progress (statistics) Application logic
Could have - -
Wont have Calculate progress – know who did

vote
Conflict!!!

 UCD for Must have’s (…)

b) NFR: usability (GUI is very important); stability (not run the risk to

invalidate elections); hard persistency (cannot loose data)
c) Domain model: should cover Vote (what, time, place), User (generalities,

ID, type, PID, status of election); Referendum (description, data); Status
(options=<party, representative>, electorsPool, state={in-progress, final},
statistics).

d) UC description
Basic c.o.e. Vote
Description 1. Elector performs “Authenticate”

2. System shows referendum options
3. Elector makes his/her choice
4. System displays the choice and asks for

confirmation
5. If “yes” the vote is stored and the Elector is

logged out (UC stops)
6. If “no” all data is cleared and the UC is

repeated from step 2.
Alternative c.o.e. Elector is voting and the system stops
 1.-4. (the same)

5. Elector answers “yes”: the vote is stored
(system stops before Elector is logged out)
6. When the system is restarted, a
rollback/commit procedure is executed (e.g. all
locks are verified and if votes were stored, the
logged in users are logged out; otherwise they are
invited to vote again).

Exceptional c.o.e. Elector forgot his/her PID
 1. Elector performs “Authenticate” (not

successful)
2. UC stops

Software Engineering (400071) – written exam
Schema solution

Q3: Software architecture/design patterns
a) Architectural patterns are macro architectural solutions to recurring

problems; design ones are micro architectural solutions instead (never
covering the whole system). The general pattern structure covers (name,
context, problem, solution, variants).

b) E.g., deployment view or component view. Components are e.g., GUI,
EES logic, DB users, DB referendum.

c) E.g. 3-tier architectural pattern. It naturally separates the tiers; it supports
scalability and persistency.

Software Engineering (400071) – written exam
Schema solution

Q4: Software design
a) Models the solution decisions, how to support requirements
b) Difference with requirements engineering (what-how; different

stakeholders; different objectives).
c) One among abstraction, information hiding, cohesion, coupling, etc. (see

slides).

Q5: Testing

a) Verification (local, to check correctness); validation (against requirements,
to check that what provided fulfills customer needs)

