Software Design 23/24. Exam

Justus Bogner <j.bogner@vu.nl>
Ivano Malavolta <i.malavolta@vu.nl>

Shared to allow students to prepare for the resit exam.

20 single-choice questions, at least 12 correct answers required for passing (6.0)

Q1 (1 point): Consider the following state machine diagram representing the behavior of a system
with a variable x. Assume that the state machine started and then this event sequence occurs:
e2,e4,el1,eb,el, el

What is the value of variable x after that?

entry / x=x"2
exit [x--
$1.1 el/x++ S| $1.2
e5
_ entry / x++ ed ed | x++
.“‘1'5a exit| x=x+3 |& -z
Ty
[s13 e3[x>31] &6
e2 | X--
}‘ entry / x=x-4
e -

A 31
B. 27
C. 30
D. 26

Q2 (1 point): Which design pattern is appropriate for implementing the following scenario? "A social
media platform allows users to follow their favorite artists and to receive notifications whenever the
artists release new music or announce upcoming concerts. The platform should notify all followers of
an artist whenever such an event occurs."

A. lterator
B. Observer
C. Adapter

D. Decorator

mailto:j.bogner@vu.nl
mailto:i.malavolta@vu.nl

Q3 (1 point): Which design principle is violated in the following Java code snippet?

public class FileManager {
public void saveFile(String fileName, String content) {

// save file logic

public void loadFile(String fileName) {
// load file logic

public void deleteFile(String fileName) {
// delete file logic

public void encryptFile(String fileName, String algorithmName) {
// encryption logic

}
}
A. Information hiding
B. Law of Demeter
C. Single responsibility principle
D. Interface segregation principle

Q4 (1 point): Which design principle is applied in the below Java code snippet?

public class Car {
private final String carlID;

private final Owner owner;

public Car(String carID, Owner owner) {
this.carID

this.owner

carlD;

owner;

public String getCarID() {

return carlD;

public Owner getOwner() {

return owner;

Immutability

Encapsulating inherent complexity
Liskov substitution principle
Inversion of Control

oo >

Q5 (1 point): Given the following sequence diagram, which trace is not possible?

:C1 C2 C3 :C4
s 2 s | |
s > i d i
! ! ; >
| c | | |
« e e e
e | |
. > : :

e s b s e
: . > :

a—->c—o>e—>d—ob
d—-a—->c—oe—b
a—->d—oe—>b-oc
a—>c—>d—oe—b

oo w>

Q6 (1 point): Consider the following relationship description between two classes: “In a company, an
employee always has exactly one manager that is responsible for the yearly performance evaluation.
It should never happen that an employee has no manager, i.e., an employee cannot exist without a
manager.” How would you model this relationship in a class diagram?

A. Composition

B. Shared aggregation
C. Association

D. Inheritance

Q7 (1 point): Given the following sequence diagram, which statement is false?

:C1 :C2 :C3 :C4

=g | o
! ! ! >
loop(1,5)) i | |
! m2 | | |
Twm | |

s > m4 i i

! : > m5 !

! ! ; >
break) [x>3] | | |
| mé ! ! !

: > m7 i i

! . > !

! ! m8 ! !

! i > !

| m9 | | |

. > ! !

Regardless of the value of x, the loop is always executed exactly five times.

If the value of x after the loop is greater than 3, m9 is never executed.

If x is greater than 3 after the loop, m6 and m7 will be executed.

Removing the seq fragment from the diagram would change the execution semantics.

oo w>

Q8 (1 point): Which of the following statements about generalization in class diagrams is true?

Every instance of a superclass is also an indirect instance of its subclasses.

All attributes of the superclass (regardless of their visibility) are inherited by its subclasses.
Instantiating an abstract class is possible, unless it is marked as static.

Having deep inheritance hierarchies might impact the maintainability of the system.

oo w>

Q9 (1 point): Which of the below state machine diagrams best describes the following scenario? “A
smart garage door system always starts in the state Open. When the owner’s smartphone
disconnects from the WiFi (e1) or when a button is pressed in the app (€5), the system changes to the
Closing state. In both cases, however, it first checks if no object is blocking the path of the garage
door before transitioning (g1). When the door is extended to full length (e2), the garage light is
switched off (a1) and the system changes to the state Closed. From there, pressing another button in
the app (e3) transitions the system to the Opening state. When the door has been completely
retracted (e4), the light is switched on (a2) and the system changes to the state Open again.”

<do not randomize order of options>

ed | a2
Open Opening
N

ed | a2
Open Opening

P/
ellgl e5/gl e3 el [g1] eb [g1] e3
vV YV vV WV
Closing Closed Closing Closed
&2/ al e2/al
Diagram 1 Diagram 2
ed [a1 ed /a2
Open Opening Open Opening
I\ N N i\
e [g1] e5 [g1] e3 e [g1] 5 [g1] e3
vV V¥
Closing Closed Closing Closed
e2/a2 e2/al
Diagram 3 Diagram 4

A. Diagram 1
B. Diagram 2
C. Diagram 3
D. Diagram 4

Q10 (1 point): Which design pattern is appropriate for implementing the following scenario? “A
complex application has an extensive number of configuration options that are loaded from a config
file before startup. Some of these options can be changed at runtime. The loaded configuration needs
to be made available to many other classes, but it is also important that only a single version of the
configuration exists.”

Factory Method

A

B. Decorator
C. Flyweight
D. Singleton

Q11 (1 point): Which statement about UML package diagrams is false?

A. Aclass can be in exactly one package.
B. Packages are meant to improve understanding and navigating through a project.

C. Package by layer is great for isolating change and therefore recommended for large projects.
D. A package groups various models or model elements together.

Q12 (1 point): Which conceptual error exists in the below class diagram?

Car

Engine

+ carld: int : ,
_ _ + engineld: int
- engine: Engine

- type: Strin o ——
P g 0.1 - fuelType: String

- horsepower: int

_year- int 0.1

+ increasePower(): void

+ startEngine(): void _
+ decreasePower(): void

+ stopEngine(): void

i
1
Driver

drives + driverld: int

- car. Car
> - name: String

0.”

+ drive(): void
+ park(): void

A. Inreality, a Car cannot have more than one Driver, so the multiplicity should be changed from
0..*t0 0..1.

A Car cannot exist without an Engine, so the relationship should be a composition instead.
Each driver has exactly one Car, so the relationship should be a composition instead.

The indicated navigability requires that a Car has a reference to a Driver.

Cow

Q13 (1 point): Which statement about the below package diagram is true?

flightbooking
<<import>>
.___:5
application -.___ airlines
; -.__ <<import>>
<<import>> RRRET
i N
W
<<import>> search
__________________ }
booking customers
: —— <<import>>
<<im|:?or1:r> ... <<import>>
“:’I -‘--"-‘ Y
iy
payment notification

The hierarchical imports indicate that the system is packaged by layer.

The cyclic dependency between booking and customers is not problematic because the
customers package does not import any other packages.

The application package imports three classes.

The naming after domain concepts indicates that the system is packaged by feature.

Q14 (1 point): Which of the following object diagrams is consistent with the UML class diagram?

<do not randomize order of options>

Class diagram

Object diagram 1 Object diagram 2

gives

il: Instructor cl: Course

attends
{abstract} Instructor 7| cl:Course

c2: Course

Person
3 il: Instructor .
— gives gives

1
gives
j& 0.1 Object diagram 3 Object diagram 4

Student Course

attends
s1: Student cl: Course
0.* 0.*

il: Instructor
ives

oo w>

gl

Object diagram 1
Object diagram 2
Object diagram 3
Object diagram 4

Q15 (1 point): Which of the following statements does not apply to the Loop fragment of a UML
sequence diagram?

A.
B.

C.

D.

The loop fragment has only a single operand.

If the minimum and maximum numbers of iterations are not specified, the default value is (1,
A fragment with 1oop (5) and the guard [x < 5] is executed exactly 5 times, independently
of the guard.

The minimum and maximum numbers of iterations can be defined, but they are not
mandatory.

Q16 (1 point): Given the following UML state machine diagram, which of the following statements is

false?

e2 Cc3

o 2 | -@

A el 1

2

1 (B

A. State C1 is reached when both the two orthogonal regions of B have reached their final

states.

Oow

When event e2 occurs, B is exited only if B2 is currently active.
The only way to reach state B2 is by passing through state B1.
When B is active, two of its substates will be active at the same time.

Q17 (1 point): Consider a firefighting system where the central Fire Station monitors multiple fire
trucks deployed in different locations. The Fire Station needs to notify all fire trucks whenever there is
a new emergency. Which class diagram best represents the implementation of the Observer design
pattern in this scenario?

<do not randomize order of options>

Subject

+attach(Observer): void
+detach(Observer): void

+notifyAllObservers(): void

|

FireStation

+location: Location

Subject

Observer

+update(): void

+attach(Observer): void
+detach(Observer): void

+notifyAllObservers(): void

subject observers

A B
Subject Subject
+attach(Observer): void . Observer +attach{Observer): void . Fire Truck
subject observers subject trucks
+detach(Observer): void 11 o +update(): void +detach(Observer): void 11 o +update(): void
+notifyAllObservers(): void +notifyAllObservers(): void
FireStation FireStation
FireTruck +location: Location +location: Location
+plateNumber: String +name: String +name: String
+update(): voic
Cc D

Observer

FireTruck

+plateNmr: String

+name: String

station _ fireTrucks

0."

|

FireStation

+location: Location

+name: String

1.1

»

o- +update(): void

FireTruck

+plateNmr: String

+update(): voic

A. Solution A
B. Solution B
C. Solution C
D. Solution D

Q18 (1 point): Which design principle is violated by the Java code snippet shown below?

public class OrderClient {

private MusicShop musicShop;

public boolean testRetrieval() {
int numBooklets = this.musicShop.getCollection().getGenre("Rock™)
.getAlbums().find("Master of Puppets").getNumBooklets();

/] ...
}
}
A. Interface segregation principle
B. Law of Demeter
C. Single responsibility principle
D. Liskov substitution principle

Q19 (1 point): Which of the following statements about complexity is true?
A. ltis more important for a module to have a simple interface than a simple implementation.
B. Itis good practice to have the same snippet of code appearing in many parts of your system.
C. One method should perform as many tasks as possible.
D. Itis more important for a module to have a simple implementation than a simple interface.

Q20 (1 point): Which of the following statements about Java source code is true?
A. Having a class that is mostly accessed through getter and setter methods is always a good
design choice.
B. Itis advised to reduce pairwise dependencies across classes as much as possible.
C. If you believe that a method will be useful in the future, it is advised to implement it, even if it
is never called in the current version of the system.
D. Long call chains of getter methods are an indication of good design.

