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February 1, 2018

1.
(a) These Venn-diagrams show the construction of (A \ (C'\ B))":

We now see that indeed, (A°UC)\ (AN B) will give the same Venn-diagram
as the top-right picture for (A \ (C'\ B))*.

(b) Using the algebra of sets, we can prove the equality as follows:

(AUC)\(ANB)=(A°UC)N (AN B)° (definition)
=(A°UC)N(A°UB°) (De Morgan)
=AU (CnNBY (distributivity)
=A°U(C\ B) (definition)
=A°U((C\ B))° (involution)
=(AN(C\ B)°)* (De Morgan)
=(A\ (C\ B))° (definition)



Here is a proof by logical reasoning:

Suppose that z € (A°UC)\ (AN B). Then z € A°UC and = ¢ AN B.
Hence z € A° or x € C, and it is not the case that x is in both A and B.
Therefore, z € A° or x € C, and at the same time, x € A° or z € B°. But
this means that either x € A€, or else x must be both an element of C' and
of B®. So xz € A° or else x € C'\ B, which means that it cannot be the case
that z is both in the set A and not in the set C'\ B. So it is not the case
that x € A\ (C'\ B), and therefore z € (A\ (C'\ B))".

This argument can be reversed: if z € (A\ (C'\ B))¢, then it is not the
case that x € A\ (C'\ B). In other words, it is not the case that x € A and
x ¢ C'\ B. But this means that either x € A, or else x € C'\ B. Hence,
either x € A°, or else x is both an element of C' and of B¢. From this it
follows that x € A or x € C, and at the same time, z € A° or x € B°.
Thus, x € AU C, and it is not the case that x € A and x € B. Therefore,
r € A°UC and © ¢ AN B, which means that z € (A°UC) \ (AN B).

2. The right endpoint of the interval A, increases with n from 1/2 to 1. The
left endpoint also increases with n, from —1 to 0. So only the real numbers
in (—1,1) lie in at least one of the sets A, and therefore (2, A, C (—1,1).
But for z > 1/2 we have that x ¢ A;, so these points are not in ()~ A,.
And for z < 0, we have that = ¢ A, if we choose n large enough, so these
points are also not in ()~ A,. Since every point in the interval [0, 1/2] does
lie in A, for every n € N, we conclude that (-, A, = [0,1/2].

3.  We first draw a picture of the sets A, B and C' in R?. Each of these sets
is a rectangle. We use solid lines for sides of rectangles that are part of the
set, and dashed lines for sides that are not part of the set:

As we see in the picture, AN B is equal to the product set [2,3) x (0,2). If
we then remove the points in C', we get the set

(ANB)\ C = [2,3) x (0,1).



4.

(a) The total number of outcomes is 12!/(12—6)! = 12!/6! = 12-11-10-9-8-7.
(b) First, choose the three draws that yield a blue ball. This fixes the
positions in the outcome that correspond to the blue balls, and the positions
that correspond to the red balls. We then still need to choose the three
numbers of the blue balls (with order), and the three numbers of the red
balls (with order). Hence the desired number of outcomes is:

6 6!
(4-3.2)-(4-3-2)= — .41. 41 =6!.-4.4.
<3> (4-3-2)-(4-3-2) 313! 0

Alternatively, we can first choose the three numbers of the red balls that
are drawn, and the three numbers of the blue balls that are drawn. Given
these numbers, we still have to multiply by the number of ways in which the
numbers can be ordered. This gives again

4\ (4 A4l
(D) 6l= 6l =614 4
<3> (3) e FTRE TR TR

(c¢) First, choose one of the 3! possible orders in which the three colours
appear. Then, choose the first and second red number that are drawn, the
first and second blue number, and finally, the first and second green number:

3. (4-3)-(4-3)-(4-3).

Alternatively, first choose for each colour the numbers of the balls that
are drawn of that colour. Then multiply by the number of ways in which
these numbers can be arranged to give an outcome satisfying the description
(3! ways to order the colours, 2 ways to order the numbers of each colour):

4\ [4\ (4 412 412 412
. . .31.2.2.9 — : . .31 =31-(4-3)-(4-3)-(4-3).
(2) (2) (2) s oo ol g T3 (3)- (403) - (4-3)

5. We have to prove using mathematical induction that for all n € N,

4zn:k(—1)k = (=1)"(2n+1) — 1. (%)

We start with the base case. For n = 1 we have on the one hand,



and on the other hand,
-D)"2n+1) —-1=(-D'Q-1+1)-1=-3-1=—4.
This shows that (%) is indeed true for n = 1.
Next, let m € N be arbitrary, and assume that

43 k(-1)F = (-)"@m+1) - 1. IH
k=1
It now follows that
m+1 m
Y T k(-1)F =4 k(=1)F + 4(m + 1)(-1)"
k=1 k=1
IH

= (-1)"2m+ 1) — 1+ 4(m+ 1)(=1)™*!
= (=)™ [=2m+ 1) +4(m+1)] -1

= (=)™ Em+3) = 1= (=)™ 2(m+ 1) +1) - 1.

This shows that if (x) is true for n = m, then it is also true for n = m + 1,
which completes the inductive proof.

6.

(a) The smallest possible image of the points in the set {1, ...,10}* is clearly
f(1,10) = —8, and the largest is f(10,1) = 19. It is not difficult to see that
all intermediate integer values are attained as well. Hence

f{1,...,10}*) = {-8,...,19}.

(b) We are looking for all points (n,m) € N? for which it is the case that
f(n,m) =2n —m = 0. So this means that we must have m = 2n, where n
ranges over the natural numbers. In other words,

F1{0}) ={(n,2n): n € N} = {(1,2),(2,4),(3,6),... }.

(c) The function f is not injective, because f(1,2) = f(2,4) = 0 (see the
answer in (b)). So f cannot be bijective either. However, f is surjective,
because for any number k£ € 7Z it is the case that f(n,m) = 2n —m = k has
a solution with n, m € IN: for k positive we can take for instance n =m = k,
and for k£ nonpositive we can take n =1 and m =2 — k.



