Security
29 June 2015

e This exam consists of two parts:
(1) eight short questions, worth 5 points each and
(2) one problem consisting of five parts, worth 10 points each.
The final grade is calculated as (PointsAttained + 10)/10.

Mark every page with your name and student number.
e You are not allowed to use a calculator, books, notes, nor other additional material.
e Do not use pencil or red ink.

e Answer in English. Encrypted answers are not accepted!

1 Short Questions (40 points: 8 x 5 points)

Answer all of the questions below. Make sure you answer all parts of each question.

1.

What is the ‘glue’ in a DNS response? Why is it necessary? Provide a (simple) example of a query
and a response which involves glue. (Make sure to include the record types.)

A user can be authenticated based on something they know, such as a password or PIN. What are
the 3 other categories/factors which can be used to authenticate someone? Provide an example of
each of them.

Give four examples of (substantially different) techniques which might be used for defense-in-depth
of a web server, and (briefly) explain what they each defend against.

What does it mean for a cryptosystem to be ‘Shannon secure’? Can a public-key cryptosystem be
Shannon secure? What about one based on one-time pads?

What is meant by the same-origin policy? (Provide an example of two different origins.) Where is
it used? Does it provide protection against related-path attacks?

Give an example of three (different) types of web server misconfigurations which could leak informa-
tion which might be useful to an attacker.

In a threat model, what is a ‘use scenario’? Provide an example of a supported use and an unsup-
ported use.

How is the secret key calculated, using the Diffie-Hellman key exchange method? Does this help
against a man-in-the-middle attack?

0~ O ULk W N

2 Problem 1: Code Review (50 points: 5 x 10)

The source code on the next 3 pages (Listing 2) contains 5 different vulnerabilities. You have to find
them (by reviewing the code), and for each of the 5 vulnerabilities, answer the following questions:
Name the vulnerabilty, and provide a short description. [2pt]

Explain (briefly) why the vulnerability is a problem. [1pt]

Specify where the problem is located in the code. [1pt]

Explain why the code has this vulnerability. [1pt]

A

Describe how the vulnerability could be exploited by an attacker. [2.5pt]
6. Explain how the vulnerability could be prevented by changing the code. [2.5pt]

The code is responsible for the checkout process for a webstore. It has to compute the total amount
that a customer has to pay, and verify the payment information they provide.

It is written in JavaServer Pages (JSP), which is a technology which is used to dynamically generate
HTML webpages (similar to PHP) using Java code. The scripts are enclosed in delimiters. The
delimiters <% ... %> contain a fragment of Java code that is executed when the page is requested.
(The delimiters <%@ ... %> are only used below to import the Util class.)

You are only being asked to do a security review; you can ignore any other problems with the code.
You should consider both what is present in the code, as well as anything which might be missing,
but you can ignore any problems outside the scope of this code (for example, there is no need to
consider DoS attacks, nor server misconfigurations).

The rest of this page contains an example. Turn to the next page to see the code you should review.

For example, Listing 1 contains some vulnerable C code (you don’t have to understand it):

Listing 1: Example (this is not the code you should review)

int main(int argc, char** argv) {
char * name[16];

if (argc !'= 2) return 1;
strcpy (name, &argv[1]);
printf ("Hello %s!'\n", name);
return O;

And here is an example answer for one vulnerability (remember, you must discuss all 5):

1. The listing contains a buffer-overflow vulnerability, which is a vulnerabilty that allows an at-
tacker to write data beyond the bounds of an array and overwrite adjacent memory locations.
These adjacent memory locations can hold sensitive information that allows an attacker to com-
promise the execution of the application or modify the behavior in application specific ways.

2. An attacker can craft an input, passed as the first argument, that overwrites the return address
with an attacker specified address. This allows the attacker to redirect the execution when the
main function returns and can result in arbitrary code-execution.

3. The vulnerability is introduced by the unsafe function strcpy , located on line 5, that doesn’t
perform bounds checking.

4. The vulnerability can be patched by using the safer strncpy function. The strcpy (name, &argv[1])

function should be replaced by strncpy(name, &argv[1], sizeof(name) - 1) followed by
name [sizeof (name) - 1] = ’\0’, because strncpy doesn’t NUL terminate the destination if
the source string is greater than or equal to the length of the argument!

Listing 2: JSP code to be reviewed

<%@ page import="work.security-home.Utils">

1
2
3 <!

4 public String decrypt(String data) {

5 Cipher cipher = Cipher.getInstance ("AES/ECB/PKCS5PADDING");

6 SecretKeySpec secretKey = new SecretKeySpec (SECRET_KEY, "AES");
7 cipher.init (Cipher .DECRYPT_MODE, secretKey);

8 return new String(cipher.doFinal (Base64.decodeBase64 (data)));

9

10

11 /*

12 The sesston %s stored in encrypted form in a cookie wtith the
13 following format:

14

15 username=STRINGSpassword=STRING&mode=STRING

16

17 The password %s stored using the uniz password scheme.

18 The mode can be etther the string production or development, which
19 allows developers to test the code by skipping the creditcard processing.
20 */

21 public Hashtable <String, String> getSession () {

22 Cookie[] cookies = request.getCookies ();

23 if (cookies != null) {

24 for (int i = 0; i < cookies.length; i++) {

25 if (cookies[i].getName ().equals("session")) {

26 String rawSession = decrypt(cookies[i].getValue ());
27 return Utils.parseSession (rawSession);

28 }

29 }

30 }

31 return null;

32 }

33

34 public String escapeDbParam (String s) {

35 String escape = "\x00\n\r\\’\"\xla";

36

37 for (int i = 0; i < escape.length(); i++) {

38 s = s.replace(escape.charAt (i), "\\" + escape.charAt(i));
39 }

40

41 return s;

42 }

43

44 public boolean isAuthenticated () {

45 Hashtable <String, String> session = getSession();

46 String fmt = "SELECT * FROM users WHERE "

47 + "username = ’%1s’ AND password = ’%2s’";
48 String query = String.format(fmt,

49 session.get("username"),
50 session.get ("password"));
51

52 ResultSet rs = Utils.executeQuery (query);

53

54 return Utils.getRowCount (rs) == 1;

55

56 }

57

58

59

60 public int getDiscount (String coupon) {

61 String fmt = "SELECT * FROM coupons WHERE coupon = ’%l1s’";
62 String query = String.format(fmt, escapeDbParam (coupon));
63 ResultSet rs = Utils.executeQuery (query);

64

65 if (Utils.getRowCount (rs) == 1) {

66 rs.getInt("discount");

67 }

68

69 return O;

70 }

71

72 public int computeTotalAmount () {

73 int amount = Utils.toInt(request.getParameter ("amount"));
74 int donations = Utils.toInt(request.getParameter ("donations"));
75 int discount = getDiscount (request.getParameter ("coupon"));
76

7 int total = amount + donations - discount;

78

79 // To prevent a negative total amount (which happens if the
80 // discount > amount + donations), we return 0 in that case.
81 if (total < 0)

82 return O0;

83 else

84 return total;

85

86 }

87

88 public String escapeShellParam (String s) {

89 String escape = "&[><*x?7‘$O{F[]1'#";

90

91 for (int i = 0; i < escape.length(); i++) {

92 s = s.replace(escape.charAt (i), "\\" + escape.charAt(i));
93 }

94

95 return s;

96 }

97

98 public inDebugMode () {

99 Hashtable <String, String> session = getSession();

100 if (!session) reponse.sendRedirect (INTERNAL_ERROR_PAGE);

101

102 String mode = session.get("mode");

103 if (mode.equals("development")) return true;

104 return false;

105 }

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

}

%>

public boolean isValidCC () {

}

// Skip werification tf we are in debug mode.
if (inDebugMode ()) return true;

String cardNumber = request.getParameter ("cardnumber");

String expirationDate = request.getParameter ("expirationdate");
String issuer = request.getParameter ("issuer");

String cvv = request.getParameter ("cvv");

String firstname = request.getParameter ("firstname");

String lastname = request.getParameter ("lastname");

// Because the Luhn algorithm timplementation we have created isn’t

// yet fully tested, we use our legacy CC wverification tool to perform
// the walidation

String fmt = "ccvalidate ’%1s’ ’%2s’ °’%3s’ ’%4s’ ’%bs’ ’Y6s’";

// Since we do not trust the users input, escape the string we are

// going to ezecute!

String command = String.format (fmt,
escapeShellParam (cardNumber),
escapeShellParam (expirationDate),
escapeShellParam (issuer),
escapeShellParam (cvv),
escapeShellParam (firstname),
escapeShellParam (lastname);

// This exzecutes the command on the (UNIX) host machine.
Runtime rt = Runtime.getRuntime ();
Process p = rt.exec (command);

// When the ccvalidate tool returns 0, the cc is wvalid.
return p.waitFor () == 0;

public void performCheckout () {

// First, check if we are authenticated.
if (!isAuthenticated ()) {

reponse .sendRedirect (LOGIN_PAGE);
}

// Then, verify the provided creditcard <information.
if (!isValidcC () {

reponse.sendRedirect (INVALID_CC_PAGE);
}

// Finally if we are autenticated and provided wvalid CC
// information, finalize the checkout.

int amount = computeTotalAmount ();

finalizeCheckout (amount);

performCheckout () ;

<html>...</html>

