Faculty of Science Rings and fields (X_400630), part 2 Vrije Universiteit Amsterdam Partial examination 21-12-2022 (15:30-17:45)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
- Do not hand in scrap, etc., and when handing in $n \ge 1$ sheets, number them $1/n, \ldots, n/n$.
 - (1) Factorise 11 3i into irreducibles in $\mathbb{Z}[i] = \{a + bi \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, the Gaussian integers.
 - (2) Let $R = \mathbb{Z}[\sqrt{-7}]$, a subring of \mathbb{C} that is an integral domain with units $R^* = \{\pm 1\}$.
 - (a) Show that 3 is a prime element of R.
 - (b) Show that $1+\sqrt{-7}$ is an irreducible element of R but not a prime element of R.
 - (3) Let x be a variable. Factorise $2x^6 2x^5 4x + 4$ into irreducibles in $\mathbb{Z}[x]$.
 - (4) Show that $y^2x^6 + 1$ is irreducible in $\mathbb{R}[x,y]$ but reducible in $\mathbb{C}[x,y]$. Explain, as always, your method carefully, and indicate which conditions you verify before applying a theorem.
 - (5) Let $R = D^{-1}\mathbb{Z}$ be the ring of fractions for $D = \{1 + 5k \text{ with } k \text{ in } \mathbb{Z}\}$. It is given that R is an integral domain.
 - (a) Show that $R^* = \{\frac{a}{d} \text{ in } R \text{ with } a \text{ not divisible by 5}\}.$
 - (b) Prove that $\frac{5}{1}$ is a prime element of R.
 - (c) Now show that every irreducible element of R is associate to $\frac{5}{1}$.
 - (6) In \mathbb{C} , we let a be the unique positive real root of x^8-2 . We also fix a root b of x^4+1 .
 - (a) Show that $[\mathbb{Q}(a) : \mathbb{Q}] = 8$.
 - (b) Show that $\mathbb{Q}(\sqrt{2}) \subseteq \mathbb{Q}(b)$ and $[\mathbb{Q}(b):\mathbb{Q}(\sqrt{2})] = 2$. Hint: compute $(b+b^{-1})^2$.
 - (c) Now determine $[\mathbb{Q}(a,b):\mathbb{Q}]$.
 - (7) It is given that $f(x) = x^2 + 4x + 5$ is irreducible in $\mathbb{F}_7[x]$, so that $\mathbb{F}_7[x]/(f(x))$ is a field F with 49 elements. With a the class of x, we have

$$F = \{b_0 + b_1 a \text{ with } b_0 \text{ and } b_1 \text{ in } \mathbb{F}_7\}.$$

- (a) Determine a formula for $\operatorname{Fr}_7(b_0 + b_1 a)$ of the shape $b'_0 + b'_1 a$ with b'_0 and b'_1 in \mathbb{F}_7 , where Fr_7 is the Frobenius homomorphism in characteristic 7.
- (b) It is given that $E = \mathbb{F}_7[y]/(y^2 + 2)$ is also a field with 49 elements. Find an explicit field isomorphism $\psi : F \to E$, and **briefly explain** why your ψ does the job. *Hint: write elements of* E *in the form* $d_0 + d_1c$ *with* c *the class of* y.

Distribution of points														
1:	8	2a:	5	3:	9	4:	12	5a:	6	6a:	6	7a:	6	
		2b:	10					5b:	5	6b:	7	7b:	7	
		2a: 2b:						5c:	4	6c:	5			
$Maximum\ total = 90$														
	Exam grade = $1 + \text{Total}/10$													