Faculty of Science Rings and fields (X_400630), part 1 Vrije Universiteit Amsterdam Partial examination 26-10-2022 (15:30-17:45)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
- Do not hand in scrap, etc., and when handing in n > 1 sheets, number them $1/n, \ldots, n/n$.
 - (1) Let R be a commutative ring with 1 and $S = M_2(R)$, the ring of 2×2 -matrices with coefficients in R. Show that the centre $Z(S) = \{X \text{ in } S \text{ with } XY = YX \text{ for all } Y \text{ in } S\}$ of S is given by

$$Z(S) = \left\{ \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \text{ with } r \text{ in } R \right\}.$$

Hint: use simple matrices in S to obtain conditions on an element of Z(S).

- (2) Let $R = \mathbb{Z}[i] = \{a + bi \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} . Use the extended Euclidean algorithm to determine a greatest common divisor d of $\alpha = 11 + 2i$ and $\beta = 1 8i$, and to write d in the form $x\alpha + y\beta$ with x and y in R.
- (3) All parts of this problem are independent of each other. Let $R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} .
 - (a) Show that the ideal $(6, 7 \sqrt{-5})$ of R is principal.
 - (b) Let S be the ring of fractions $D^{-1}R$ for $D = \{1, 3, 9, \dots\} = \{3^m \text{ with } m \ge 0\}$. It is given that S has an identity 1_S . Show $S^* = \{\frac{\alpha}{3^m} \text{ with } m \ge 0 \text{ and } \operatorname{Nm}(\alpha) \text{ in } D\}$.
 - (c) Show that $\alpha = 2 \sqrt{-5}$ and $\beta = 3$ have greatest common divisor 1 in R.
 - (d) Prove that the ideal $(2 \sqrt{-5}, 3)$ of R is not all of R.
- (4) In this problem, formulate explicitly the results/theorems/... you use. Let $R = \mathbb{Z}[\sqrt{-7}] = \{a + b\sqrt{-7} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, which is a subring of \mathbb{C} , and I the ideal $(2 + \sqrt{-7})$ of R.
 - (a) Prove that $\varphi: R \to \mathbb{Z}/11\mathbb{Z}$, given by $\varphi(a + b\sqrt{-7}) = \overline{a 2b}$, is a ring homomorphism with kernel I.
 - (b) Show that there is a ring isomorphism $R/I \simeq \mathbb{Z}/11\mathbb{Z}$.
 - (c) Is I a maximal ideal of R? Is it a prime ideal of R?
- (5) Let R be the polynomial ring $\mathbb{Q}[x]$. In R, we consider its ideals $I=(x^2+x+1)$, J=(x-1) and $K=(x^3-1)$.
 - (a) Show that there exists a ring isomorphism $R/K \simeq R/I \times R/J$.
 - (b) Determine f(x) in R with $\deg(f(x)) < 3$ such that f(x) + K is mapped to (-x-1+I,4+J) under your map in (a).
- (6) Let R be a commutative ring with 1, and I, J and K ideals of R. Show that if R = I + J = I + K = J + K, then R = IJ + IK + JK. Hint: use $I = I^3$.

Distribution of points 1: 7 2: 8 3a: 7 4a: 8 5a: 6 6: 7 3b: 9 4b: 7 5b: 9 3c: 8 4c: 7 3d: 7											
1:	7	2:	8	3a:	7	4a:	8	5a:	6	6:	7
				3b:	9	4b:	7	5b:	9		
				3c:	8	4c:	7				
				3d:	7						
Maximum total = 90											
Exam grade = $1 + \text{Total}/10$											