Faculty of Science Rings and fields (X_400630), part 2 Vrije Universiteit Amsterdam Partial examination 23-12-2021 (12:15-14:30)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
- Do not hand in scrap, etc., and when handing in n > 1 sheets, number them $1/n, \ldots, n/n$.
 - (1) Factorise 11 + 7i into irreducibles in $\mathbb{Z}[i] = \{a + bi \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, the Gaussian integers.
 - (2) Let $R = \mathbb{Z}[\sqrt{5}]$, a subring of \mathbb{R} that is an integral domain.
 - (a) Show that 3 is a prime element of R.
 - (b) Show that $1+\sqrt{5}$ is an irreducible element of R but not a prime element of R.
 - (3) Let $R = \mathbb{Z}[x]$, where x is a variable. Factorise $5x^4 + 5x^2 + 10$ into irreducibles in R.
 - (4) Show that $x^7y^2 + x^2y^3 + x^2y + y + 1$ is irreducible in $\mathbb{C}[x,y]$. Explain, as always, your method carefully, and indicate which conditions you verify before applying a theorem.
 - (5) Let $R = D^{-1}\mathbb{Z}$ be the ring of fractions for $D = \{1, 2, 4, 8, ...\} = \{2^m \text{ with } m \ge 0\}$. It is given that R is an integral domain.
 - (a) Show that $R^* = \{\frac{\varepsilon 2^n}{2^m} \text{ with } m, n \ge 0 \text{ and } \varepsilon = \pm 1\}.$
 - (b) Prove that if p is an odd prime number then $\frac{p}{1}$ is a prime element of R.
 - (c) Now show that every irreducible element of R is associate to one of the prime elements in part (b).
 - (6) Let $f(x) = x^4 12$ in $\mathbb{Q}[x]$, a_1, a_2, a_3, a_4 its roots in \mathbb{C} , and $F = \mathbb{Q}(a_1, a_2, a_3, a_4) \subseteq \mathbb{C}$. Let a be the unique positive root in \mathbb{R} of f(x) and set $K = \mathbb{Q}(a) \subseteq F$.
 - (a) Prove that $[K:\mathbb{Q}]=4$.
 - (b) Show that $[F:\mathbb{Q}]=8$.
 - (c) Determine the minimal polynomial of a over $\mathbb{Q}(b)$, where b=ia with $i^2=-1$.
 - (7) It is given that $f(x) = x^2 + 6x + 6$ is irreducible in $\mathbb{F}_7[x]$, so that $\mathbb{F}_7[x]/(f(x))$ is a field F with 49 elements. With a the class of x, we have

$$F = \{b_0 + b_1 a \text{ with } b_0 \text{ and } b_1 \text{ in } \mathbb{F}_7\}.$$

- (a) Determine a formula for $\operatorname{Fr}_7(b_0 + b_1 a)$ of the shape $b'_0 + b'_1 a$ with b'_0 and b'_1 in \mathbb{F}_7 , where Fr_7 is the Frobenius homomorphism in characteristic 7.
- (b) It is given that $E = \mathbb{F}_7[y]/(y^2 + 1)$ is also a field with 49 elements. Find an explicit field isomorphism $\psi : F \to E$, and **briefly explain** why your ψ does the job. *Hint: write elements of* E *in the form* $d_0 + d_1c$ *with* c *the class of* y *in* E.

Distribution of points														
1:	8	2a:	5	3:	10	4:	11	5a:	5	6a:	6	7a:	6	
		2b:	9					5b:	6	6b:	6	7b:	6	
		2a: 2b:						5c:	5	6c:	7			
Maximum total = 90														
	Exam grade = $1 + \text{Total}/10$													