Faculty of Science Rings and fields (X_400630), part 1 Vrije Universiteit Amsterdam Partial examination 27-10-2021 (15:30-17:45)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
- Do not hand in scrap, etc., and when handing in $n \ge 1$ sheets, number them $1/n, \ldots, n/n$.
 - (1) Let k be a field. It is given that $k \times k$ with coordinatewise addition and multiplication is a commutative ring R with identity $1_R \neq 0_R$. Show that every non-zero element of R is either a unit or a zero divisor.
 - (2) Let $R = \mathbb{Z}[i] = \{a + bi \text{ with } a, b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} . Use the extended Euclidean algorithm to determine a greatest common divisor d of $\alpha = 6 + 2i$ and $\beta = 3 + 5i$, and to write d in the form $x\alpha + y\beta$ with x and y in R.
 - (3) All parts of this problem are independent of each other.

Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} .

- (a) Determine if $\alpha = 3 \sqrt{-3}$ and $\beta = 3 + 2\sqrt{-3}$ do or do not have a greatest common divisor in R.
- (b) For the ideals $I = (2, 1 + \sqrt{-3})$ and J = (2) of R, show that $I \neq J$ but $I \cdot I = I \cdot J$.
- (c) Show that the ideal $(8, 3 \sqrt{-3})$ of R is a principal ideal.
- (d) Let $D = \{1, 2, 4, 8, \dots\} = \{2^n \text{ with } n \geq 0\}$, and let S be the ring of fractions $D^{-1}R$. It is given that S has an identity $1_S \neq 0_S$. Determine if $\frac{2+\sqrt{-3}}{2}$ is in S^* .
- (4) In this problem, formulate explicitly the results/theorems/... you use. Let $R = \mathbb{Z}[\sqrt{-11}] = \{a + b\sqrt{-11} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, which is a subring of \mathbb{C} , and I the ideal $(9, 4 \sqrt{-11})$ of R.
 - (a) Prove that $\varphi: R \to \mathbb{Z}/9\mathbb{Z}$, given by $\varphi(a+b\sqrt{-11}) = \overline{a+4b}$, is a ring homomorphism with kernel I.
 - (b) Show that there is a ring isomorphism $R/I \simeq \mathbb{Z}/9\mathbb{Z}$.
 - (c) Is I a maximal ideal of R? Is it a prime ideal of R?
- (5) Let R be the polynomial ring $\mathbb{C}[x]$. In R, we consider its ideals $I=(x^2+x-1)$, J=(x+1) and $K=(x^3+2x^2-1)$.
 - (a) Show that there exists a ring isomorphism $R/K \simeq R/I \times R/J$.
 - (b) Determine f(x) in R with $\deg(f(x)) < 3$ such that f(x) + K is mapped to (4x + 4 + I, -3 + J) under your map in (a).
- (6) Let R be a commutative ring with $1 \neq 0$, and a, b elements of R such that the ideal (a, b) of R is equal to R. Prove that $(a^n, b^n) = R$ for each positive integer n. Hint: $1 = 1^m$ for any positive integer m.

Distribution of points											
1:	7	2:	8	3a: 3b: 3c: 3d:	8	4a:	8	5a:	6	6:	8
				3b:	7	4b:	7	5b:	8		
				3c:	8	4c:	7				
				3d:	8						
Maximum total = 90											
Exam grade = $1 + \text{Total}/10$											