Faculty of Science	ce
Vrije Universitei	t Amsterdam

Rings and fields (X₋400630) Resit 15-2-2021 (15:30-18:15)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
 - (1) Let $R = \mathbb{R} \times \mathbb{R}$ be the product ring, so addition and multiplication are defined coordinatewise. Show that R has an identity $1_R \neq 0_R$, and that every non-zero element of R is a unit or a zero divisor.
 - (2) Let $R = \mathbb{Z}[i] = \{a + bi \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} .
 - (a) Use the extended Euclidean algorithm to compute a greatest common divisor of $\alpha = 8 + 6i$ and $\beta = 7 + i$ in R, and to write it in the form $x\alpha + y\beta$ with x and y in R.
 - (b) Factorise 5 + 5i into irreducibles in R.
 - (3) Let $R = \mathbb{Z}[\sqrt{-3}] = \{a + b\sqrt{-3} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} . Prove that the ideal $I = (2, 1 + \sqrt{-3})$ is not a principal ideal of R. Hint: use the norm.
 - (4) Let $R = \mathbb{Z}[\sqrt{7}] = \{a + b\sqrt{7} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, which is a subring of \mathbb{R} , and I the ideal $(2 \sqrt{7})$ of R. We define the map $\varphi : R \to \mathbb{Z}/3\mathbb{Z}$ by $\varphi(a + b\sqrt{7}) = \overline{a + 2b}$.
 - (a) Show that φ is a ring homomorphism, with kernel I.
 - (b) Prove that there is a ring isomorphism $R/I \simeq \mathbb{Z}/3\mathbb{Z}$.
 - (c) Determine if $2 \sqrt{7}$ is, or is not, a prime element of R.
 - (5) Let R be the polynomial ring $\mathbb{C}[x]$. We define the ideals $I = (x^2 x + 1)$, J = (x + 1) and $K = (x^3 + 1)$ of R.
 - (a) Show that there is a ring isomorphism $R/K \simeq R/I \times R/J$.
 - (b) Which element f(x) + K with $\deg(f(x)) < 3$ is mapped to (x+1+I, 6+J) in $R/I \times R/J$?
 - (6) Let R be a Euclidean domain with norm $M: R \setminus \{0\} \to \{0, 1, 2, 3, \dots\}$, D a subset of $R \setminus \{0\}$ containing 1 that is closed under multiplication, and $S = D^{-1}R$. It is given that S is a domain. We view $R \subseteq S$ by means of the homomorphism $r \mapsto r/1$.

 (a) Show that for $s \neq 0$ in S,

$$N(s) = \min\{M(us) \text{ with } us \text{ in } R \text{ and } u \text{ in } S^*\}$$

defines an element of $\{0, 1, 2, 3, \dots\}$. Hint: show some such us exists, and that all such $us \neq 0$.

- (b) Prove that S with N as norm is a Euclidean domain. Hint: in order to divide a/d by $s \neq 0$ in S, first divide a by us in R for u in S^* with N(s) = M(us).
- (7) Factorise $3x^4 + 15x + 6$ into irreducibles in $\mathbb{Z}[x]$.
- (8) Show that $x^{15}y^{2021} + x^{15}y + y 1$ is irreducible in $\mathbb{C}[x,y]$. Formulate the results that you use.
- (9) Let $a = \sqrt{2} + \sqrt{-3}$ and $K = \mathbb{Q}(a)$ in \mathbb{C} .
 - (a) Prove that $K = \mathbb{Q}(\sqrt{2}, \sqrt{-3})$.
 - (b) Determine $[K:\mathbb{Q}]$.

(10) It is given that $f(x) = x^2 + 4x + 2$ is irreducible in $\mathbb{F}_5[x]$, so that $\mathbb{F}_5[x]/(f(x))$ is a field F with 25 elements. With a the class of x, we have

$$F = \{b_0 + b_1 a \text{ with } b_0 \text{ and } b_1 \text{ in } \mathbb{F}_5\}.$$

- (a) Determine a formula for $\operatorname{Fr}_5(b_0+b_1a)$ of the shape $b_0'+b_1'a$ with b_0' and b_1' in \mathbb{F}_5 , where Fr_5 is the Frobenius homomorphism in characteristic 5.
- (b) It is given that $E = \mathbb{F}_5[y]/(y^2+2)$ is also a field with 25 elements. Find an explicit field isomorphism $\varphi: F \to E$, and explain briefly why your φ does the job. Hint: write elements of E in the form $d_0 + d_1c$ with c the class of y in E.

Distribution of points																			
1:	3	2a:	8	3:	8	4a:	6	5a:	5	6a:	3	7:	8	8:	10	9a:	4	10a:	4
		2b:	4			4b:	4	5b:	6	6b:	4					9b:	4	10b:	5
						4c:	4												
Maximum total = 90																			
Exam grade = $1 + \text{Total}/10$																			