Faculty of Science
Vrije Universiteit Amsterdam

Rings and fields (X_400630) Resit 6-2-2020 (18:30-21:15)

- Attempt all problems.
- Answers without reasoning score poorly, so give proper justifications everywhere.
- In case you cannot do a part of a problem, you may still use its stated result in the remainder of the problem.
- Calculators, notes, books, etc., may not be used.
 - (1) It is given that

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \text{ with } a, b \text{ and } c \text{ in } \mathbb{Z} \text{ and } c \text{ even} \right\}$$

is a subring of $M_2(\mathbb{Z})$, the ring of 2×2 matrices with integral coefficients. Determine the centre

$$Z(R) = \{X \text{ in } R \text{ with } XY = YX \text{ for all } Y \text{ in } R\}$$

of R.

- (2) Let $R = \mathbb{Z}[i] = \{a + bi \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} .
 - (a) Use the extended Euclidean algorithm to compute a greatest common divisor of $\alpha = 2 9i$ and $\beta = 4 + 7i$ in R, and to write it in the form $x\alpha + y\beta$ with x and y in R.
 - (b) Factorise 3 + 9i into irreducibles in R.
- (3) Let $R = \mathbb{Z}[\sqrt{-6}] = \{a + b\sqrt{-6} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\}$, a subring of \mathbb{C} .
 - (a) Prove that the ideal $I = (3, \sqrt{-6})$ is not a principal ideal of R.
 - (b) Determine if the elements 3 and $\sqrt{-6}$ have a greatest common divisor in R. *Hint: use the norm.*
- (4) Let

$$R = \mathbb{Z}[\sqrt{-5}] = \{a + b\sqrt{-5} \text{ with } a \text{ and } b \text{ in } \mathbb{Z}\},$$

which is a subring of \mathbb{C} , and I the ideal $(10, 5 + \sqrt{-5})$ of R. We define the map $\varphi: R \to \mathbb{Z}/10\mathbb{Z}$ by $\varphi(a + b\sqrt{-5}) = \overline{a + 5b}$.

- (a) Show that φ is a ring homomorphism, with kernel I.
- (b) Prove that there is a ring isomorphism $R/I \simeq \mathbb{Z}/10\mathbb{Z}$.
- (c) Determine an ideal J of R such that $I \subsetneq J \subsetneq R$. Do not forget to show that your ideal J satisfies these conditions.
- (5) Let R be the polynomial ring $\mathbb{Q}[x]$. We define the ideals $I=(x^2+x+2),\ J=(x-1)$ and $K=(x^3+x-2)$ of R.
 - (a) Show that there is a ring isomorphism $R/K \simeq R/I \times R/J$.
 - (b) Which element f(x) + K with $\deg(f(x)) < 3$ is mapped to (-4x 1 + I, -1 + J) in $R/I \times R/J$?
- (6) Let

$$R = \left\{ \frac{m}{2^n} \text{ with } m \text{ in } \mathbb{Z} \text{ and } n = 0, 1, 2, 3, \dots \right\} \subseteq \mathbb{Q}.$$

It is given that R is a subring of \mathbb{Q} .

- (a) Explain why R is a domain.
- (b) Prove that R is a principal ideal domain. Hint: if I is an ideal of R show that $J = \{m \text{ in } \mathbb{Z} \text{ such that } \frac{m}{1} \text{ is in } I\}$ is an ideal of \mathbb{Z} and use its generator to generate I.

- (7) Show that each of the following polynomials is irreducible in the given unique factorisation domain. Formulate the results that you use.
 - (a) $x^3 + 5x + 2$ in $\mathbb{Q}[x]$.
 - (b) $x^6y^{2020} xy y + x + 1$ in $\mathbb{R}[x, y]$.
- (8) Let $\zeta = e^{2\pi i/3}$, $a = \sqrt[3]{2}$, $K = \mathbb{Q}(a)$ and $F = K(\zeta)$ in \mathbb{C} .
 - (a) Prove that $[K:\mathbb{Q}]=3$.
 - (b) Now show that $[F:\mathbb{Q}]=6$.

Hint: consider minimal polynomials.

(9) It is given that $f(x) = x^2 + 3x + 3$ is irreducible in $\mathbb{F}_5[x]$, so that $\mathbb{F}_5[x]/(f(x))$ is a field F with 25 elements. With a the class of x, we have

$$F = \{b_0 + b_1 a \text{ with } b_0 \text{ and } b_1 \text{ in } \mathbb{F}_5\}.$$

- (a) Determine a formula for $\operatorname{Fr}_5(b_0 + b_1 a)$ of the shape $b'_0 + b'_1 a$ with b'_0 and b'_1 in \mathbb{F}_5 , where Fr_5 is the Frobenius homomorphism in characteristic 5.
- (b) It is given that $E = \mathbb{F}_5[y]/(y^2 + 3)$ is also a field with 25 elements. Find an explicit field isomorphism $\varphi : F \to E$, and explain briefly why your φ does the job. Hint: write elements of E in the form $d_0 + d_1c$ with c the class of y in E.

	Distribution of points																
1:	4	2a:	5	3a:	5	4a:	6	5a:	5	6a:	2	7a:	8	8a:	4	9a:	4
		2b:	5	3b:	4	4b:	4	5b:	5	6b:	6	7b:	10	8b:	3	9b:	5
						4c:	5										
Maximum total = 90																	
	$\rm Exam~grade = 1 + Total/10$																