Faculteit de Exacte Wetenschappen	PDV (400163)
Afdeling Wiskunde	28 mei 2015 Wiskunde
Vrije Universiteit	$2.45 \mathrm{\ uur}$

No calculators. You can bring your book and notes. Explain what you do. If you only do part 2 then you have to do the first 5 exercises. If you do the whole exam you have to do 6 exercises of your own choice. I will give equal weight to all exercises. The variable t is called time whenever it appears.

- 1. Let u = u(x) be the unique bounded solution on the whole real line of the equation $-u'' + u = \delta$.
 - (a) Derive a formula for u(x). Hint: distinguish between x < 0 and x > 0.
 - (b) Find the Fourier transform $\hat{u}(k)$ of u(x) without using this formula.
 - (c) Use your results to explain and conclude what the Fourier transform $\hat{f}(k)$ of $f(x) = \frac{1}{1+x^2}$ is.
 - (d) In case you were not able to do (c) because you did not get (a) and/or (b): compute the Fourier transform $\hat{f}(k)$ of $f(x) = \frac{1}{1+x^2}$ using contour integration and residues. Explain which contour you take and how this choice depends on k.
- 2. The Fourier transform is by definition the appropriate extension of the map $f \to \hat{f}$ defined by

$$\hat{f}(k) = \frac{1}{\sqrt{2\pi}} \lim_{R \to \infty} \int_{-R}^{R} f(x) \exp(-ikx) dx$$

for functions for which this limit exists. Use appropriate rectangular contours in the complex plane containing the real interval [-R, R] to explain why $f(x) = \exp(-\frac{1}{2}x^2)$ implies that $\hat{f}(k) = \exp(-\frac{1}{2}k^2)$.

3. Use the result of Exercise 2 to compute the Fourier transform $\hat{E}(t,k)$ of

$$E(t,x) = \frac{1}{2\sqrt{\pi t}} \exp(-\frac{x^2}{4t})$$

and evaluate the limits of

$$\int_{-\infty}^{\infty} E(t, x) \phi(x) dx \quad \text{and} \quad \int_{-\infty}^{\infty} \hat{E}(t, k) \phi(k) dk$$

as $t \downarrow 0$ for $\phi : \mathbb{R} \to \mathbb{R}$ continuous with compact support.

4. The heat equation $u_t = u_{xx}$ has solutions of the form

$$u(t,x) = \frac{1}{t^{\alpha}} F(\frac{x}{\sqrt{t}})$$

- (a) Assume that F>0 and F is integrable. Explain why conservation of $\int_{-\infty}^{\infty} u(t,x)dx$ requires $\alpha=\frac{1}{2}$ and derive an ordinary differential equation (ODE) for F(y) (note that $y=\frac{x}{\sqrt{t}}$, take $\alpha=\frac{1}{2}$).
- (b) What is the formula for F(y) in the case that u=E where E is as in Exercise 3? Verify that this F solves the ODE you derived.
- 5. Consider $u_t + u_{xxx} = 0$ with initial data $u_0(x) = u(0, x)$. Explain why the Fourier transform $\hat{u}(t, k)$ of u(t, x) should be given by

$$\hat{u}(t,k) = \widehat{u}_0(k)e^{ik^3t}$$

The inversion formula applied to the case that $\hat{u}_0(k) = \hat{\delta}(k) = \frac{1}{\sqrt{2\pi}}$ defines a solution formula

$$u(t,x) = \frac{1}{(3t)^{\frac{1}{3}}} \operatorname{Ai}(\frac{x}{(3t)^{\frac{1}{3}}})$$

in which

$$\operatorname{Ai}(\xi) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i(\xi x + \frac{x^3}{3})} dx.$$

Use the methods in the first part of the file Airy.pdf to determine the asymptotic behaviour of $Ai(\xi)$ for $\xi \to -\infty$. That is: find a function $f(\xi)$ such that

$$\lim_{\xi \to -\infty} \frac{\operatorname{Ai}(\xi)}{f(\xi)} = 1.$$

6. Consider for u = u(t, x) the first order partial differential equation (PDE)

$$u_t + c(x, u)u_x = h(x, u) \quad (x \in \mathbb{R}, t \ge 0).$$

- (a) Derive the first order ordinary differential equations for x = X(t) and u = U(t) to impose so that for solutions u(t, x) of the PDE it holds that U(t) = u(t, X(t)).
- (b) Take c(x, u) = u and h(x, u) = 0, consider the solution of the PDE that satisfies the initial condition $u(0, x) = \exp(-x^2)$. Explain why the solution develops a shock in finite time. At what time does the shock appear?

7. Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic continuous function with partial Fourier sums $s_n(x)$. In the course it was shown that the sequence of averages

$$\sigma_N(x) = \frac{1}{N+1} \sum_{n=0}^{N} s_n(x)$$

converges uniformly to f(x) as $N \to \infty$. Explain directly from this result that

$$\int_{-\pi}^{\pi} |s_N(x) - f(x)|^2 dx \to 0$$

as $N \to \infty$.

8. Let $\beta \in \mathbb{R}$. Consider for u = u(t, x) the equation

$$u_t = u_{xx}$$

with 0 < x < 1. Given boundary conditions

$$u(t,0) = 0 = u_x(t,1) + \beta u(t,1),$$

the PDE has solutions of the form u(t,x)=T(t)X(x). For which β do there exist nontrivial solutions u(t,x)=T(t)X(x) with $T(t)\to\infty$ as $t\to\infty$?