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No calculators. You can bring your book and notes. Explain what you do. If
you only do part 2 then you have to do the first 5 exercises. If you do the whole
exam you have to do 6 exercises of your own choice. I will give equal weight to
all exercises. The variable t is called time whenever it appears.

1. Let u = u(x) be the unique bounded solution on the whole real line of the
equation −u′′ + u = δ.

(a) Derive a formula for u(x). Hint: distinguish between x < 0 and
x > 0.

(b) Find the Fourier transform û(k) of u(x) without using this formula.

(c) Use your results to explain and conclude what the Fourier transform

f̂(k) of f(x) = 1
1+x2 is.

(d) In case you were not able to do (c) because you did not get (a)

and/or (b): compute the Fourier transform f̂(k) of f(x) = 1
1+x2

using contour integration and residues. Explain which contour you
take and how this choice depends on k.

2. The Fourier transform is by definition the appropriate extension of the
map f → f̂ defined by

f̂(k) =
1√
2π

lim
R→∞

∫ R

−R
f(x) exp(−ikx)dx

for functions for which this limit exists. Use appropriate rectangular con-
tours in the complex plane containing the real interval [−R,R] to explain

why f(x) = exp(− 1
2x

2) implies that f̂(k) = exp(− 1
2k

2).

3. Use the result of Exercise 2 to compute the Fourier transform Ê(t, k) of

E(t, x) =
1

2
√
πt

exp(−x
2

4t
)

and evaluate the limits of∫ ∞
−∞

E(t, x)φ(x)dx and

∫ ∞
−∞

Ê(t, k)φ(k)dk

as t ↓ 0 for φ : IR→ IR continuous with compact support.
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4. The heat equation ut = uxx has solutions of the form

u(t, x) =
1

tα
F (

x√
t
)

(a) Assume that F > 0 and F is integrable. Explain why conservation
of

∫∞
−∞ u(t, x)dx requires α = 1

2 and derive an ordinary differential

equation (ODE) for F (y) (note that y = x√
t
, take α = 1

2 ).

(b) What is the formula for F (y) in the case that u = E where E is as
in Exercise 3? Verify that this F solves the ODE you derived.

5. Consider ut+uxxx = 0 with initial data u0(x) = u(0, x). Explain why the
Fourier transform û(t, k) of u(t, x) should be given by

û(t, k) = û0(k)eik
3t

The inversion formula applied to the case that û0(k) = δ̂(k) = 1√
2π

defines

a solution formula

u(t, x) =
1

(3t)
1
3

Ai(
x

(3t)
1
3

)

in which

Ai(ξ) =
1

2π

∫ ∞
−∞

ei(ξx+
x3

3 )dx.

Use the methods in the first part of the file Airy.pdf to determine the
asymptotic behaviour of Ai(ξ) for ξ → −∞. That is: find a function f(ξ)
such that

lim
ξ→−∞

Ai(ξ)

f(ξ)
= 1.

6. Consider for u = u(t, x) the first order partial differential equation (PDE)

ut + c(x, u)ux = h(x, u) (x ∈ IR, t ≥ 0).

(a) Derive the first order ordinary differential equations for x = X(t)
and u = U(t) to impose so that for solutions u(t, x) of the PDE it
holds that U(t) = u(t,X(t)).

(b) Take c(x, u) = u and h(x, u) = 0, consider the solution of the PDE
that satisfies the initial condition u(0, x) = exp(−x2). Explain why
the solution develops a shock in finite time. At what time does the
shock appear?
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7. Let f : IR→ IR be a 2π-periodic continuous function with partial Fourier
sums sn(x). In the course it was shown that the sequence of averages

σN (x) =
1

N + 1

N∑
n=0

sn(x)

converges uniformly to f(x) as N →∞. Explain directly from this result
that ∫ π

−π
|sN (x)− f(x)|2dx→ 0

as N →∞.

8. Let β ∈ IR. Consider for u = u(t, x) the equation

ut = uxx

with 0 < x < 1. Given boundary conditions

u(t, 0) = 0 = ux(t, 1) + βu(t, 1),

the PDE has solutions of the form u(t, x) = T (t)X(x). For which β do
there exist nontrivial solutions u(t, x) = T (t)X(x) with T (t) → ∞ as
t→∞?
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