Faculteit der Exacte Wetenschappen	Partiële Differentiaalvergelijkingen (400163)
Afdeling Wiskunde	Midterm exam, 24-3-2015
Vrije Universiteit	2 uur

No formula sheets, no calculators. Explain what you do. Do exercise 1 or 2 but not both (3 points). Do exercise 3 and 5 (2 points each) or do exercise 4 (4 points). Do exercise 6 or 7 but not both (2 points). Do exercise 8 (1 point). Grade: total score plus 1, but not more than 10.

1. Consider for u = u(t, x) the first order partial differential equation (PDE)

$$u_t + c(x, u)u_x = h(x, u),$$

with initial condition at t = 0 given by

$$u(0,x) = f(x) > 0.$$

Here $x \in \mathbb{R}$ and $t \geq 0$. We assume that $(x, u) \to c(x, u)$ and $(x, u) \to h(x, u)$ define smooth functions on \mathbb{R}^2 , and that $f : \mathbb{R} \to \mathbb{R}$ is also smooth.

- (a) Let x = X(t) be a smooth curve in the t, x-plane and assume that u = u(t, x) is a smooth solution of the (PDE). Let U(t) = u(t, X(t)). Derive an equation of the form $\dot{X} = ...$ in terms of X and U that leads to an equation of the form $\dot{U} = ...$ in terms of X and U.
- (b) Take c(x, u) = c(x) = x(1 x). The differential equation for X(t) then decouples from the equation for U(t). Its solutions define all the characteristic curves in the t, x-plane. Determine the general solution of the differential equation for x = X(t) in the range 0 < x < 1.
- (c) If the characteristic curve through a given point (t, x) intersects the vertical axis in the t, x-plane we denote the point of intersection by (0, k). Derive an equation for k in terms of the coordinates t and x of the given point if 0 < x < 1.
- (d) Take again c(x, u) = c(x) = x(1 x) and $h(x, u) \equiv 0$. Give a second equation for the value of u = u(t, x) in the same given point (t, x) which involves k and f(k). Determine u = u(t, x) when t > 0 and 0 < x < 1.
- (e) Now take c(x, u) = c(x) = x(1 x) and $h = h(u) = -u^2$. Then the second equation in Part 1d above has to be replaced by another equation for the value of u = u(t, x) in the same given point (t, x). Determine again u = u(t, x) when t > 0 and 0 < x < 1.
- (f) For which (t, x) with t > 0 are the solution formula's you found also valid?

2. Consider for u = u(t, x) the first order partial differential equation (PDE)

$$u_t + uu_x = 0,$$

with initial condition at t = 0 given by

$$u(0,x) = f(x) = \frac{1}{1 + e^x}$$

Here $x \in \mathbb{R}$ and $t \geq 0$. The graph u = f(x) has $(x, u) = (0, \frac{1}{2})$ as a point of symmetry and may be described by x = g(u). The function G defined by

$$G(u) = \int_{\frac{1}{2}}^{u} g(s)ds$$

is symmetric around $u = \frac{1}{2}$.

- (a) Explain why the smooth part of the solution is contained in the graph x = g(u) + ut. Observe that $(x, u) = (\frac{t}{2}, \frac{1}{2})$ remains a point of symmetry!
- (b) For which t is the point of symmetry $(x, u) = (\frac{t}{2}, \frac{1}{2})$ no longer on the graph of the smooth part of the solution?
- (c) Explain why the equal area rule implies that for every such t the shock is described by

$$u_{-} = \frac{1}{2} + \epsilon \qquad u_{+} = \frac{1}{2} - \epsilon$$

with ϵ depending on t. Express t in ϵ . What is the x-location of the the shock (in Olver's notation, what is $\sigma(t)$)?

3. Let $f: \mathbb{R} \to \mathbb{R}$ be a 2π -periodic continuous function with partial Fourier sums $s_n(x)$. In the course it was shown that the sequences of averages

$$\sigma_N(x) = \sum_{n=0}^{N} s_n(x)$$

converges uniformly to f(x) as $N \to \infty$, i.e.

$$\max_{x \in \mathbb{R}} |\sigma_N(x) - f(x)| \to 0.$$

Use the inner product structure to derive from this result that

$$\int_{-\pi}^{\pi} |s_N(x) - f(x)|^2 dx \to 0$$

as $N \to \infty$.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be an odd and 2π -periodic piecewise smooth function. The Fourier series of f is given by

$$\sum_{n=1}^{\infty} b_n \sin nx.$$

(a) To make sure you use the right formula's for the Fourier coefficients: derive the integral formula's for b_n in the case that

$$f(x) = \sum_{n=1}^{N} b_n \sin nx$$

for some integer N > 0.

(b) Use the case that $f(x) = \pi - x$ for $0 < x < \pi$ to compute

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

in terms of π by using the explicit values of b_n . Explain why your answer is correct. Hint: the answer involves $\int_0^{\pi} f(x)^2 dx$.

(c) For the same f, let

$$s_N(x) = \sum_{n=1}^N b_n \sin nx.$$

Show that $s'_N(x) + 1$ is a multiple of

$$D_N(x) = \frac{\sin(N + \frac{1}{2})x}{\sin\frac{x}{2}}$$

by using the complex formula's for $\cos nx$ and the values of b_n .

(d) Examine the integral

$$g_N(x) = \int_x^{\pi} D_N(s) ds$$

by first sketching the graph of D_N for N not too small. Hint: the denominator is monotone in x. Use this graph to give a sketch of the graph of g_N for $0 < x < \pi$ and explain why $g_N(x) \to 0$ as $N \to \infty$ for $0 < x < \pi$.

5. Use the Fourier series of $f(x) = x^2$ with $|x| \le \pi$ to determine

$$\sum_{n=0}^{\infty} \frac{1}{n^4}.$$

6. Consider for u(t,x) the wave equation

$$u_{tt} = u_{xx}$$

The initial condition at t = 0 is

$$u(0,x) = f(x), \quad u_t(0,x) = 0,$$

with $f: \mathbb{R} \to \mathbb{R}$ 2π -periodic and smooth. Therefore f equals its complex Fourier series:

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}.$$

What is the corresponding Fourier series formula for the solution u(t,x)? Use complex notation for the time-dependent part to rederive the d'Alembert formula.

7. Consider for u(t,x) the inhomogeneous wave equation

$$u_{tt} = u_{xx} + f(t, x)$$

in which f is a smooth function. The initial condition at t = 0 is

$$u(0,x) = 0, \quad u_t(0,x) = 0,$$

Change to variables $\xi = x - t$ and $\eta = x + t$ and rewrite the equation for $v(\xi, \eta) = u(t, x)$ with $g(\xi, \eta) = f(t, x)$. Explain why $v = v_{\xi} = v_{\eta} = 0$ on the diagonal $\eta = \xi$.

8. Let $\beta \in \mathbb{R}$. Consider for u = u(t, x) the equation

$$u_t = u_{xx}$$

with 0 < x < 1. Given boundary conditions

$$u_x(t,0) = 0 = u_x(t,1) + \beta u(t,1),$$

the PDE has solutions of the form u(t,x) = T(t)X(x). The only way to have u satisfy $u_x = 0$ in x = 0 is to have $X(x) = \cos(\mu x)$ or $X(x) = \cosh(\mu x)$ (up to a mulitplicative constant) with $\mu \ge 0$.

- (a) Which of these two types solutions have $T(t) \to \infty$?
- (b) For which β do such solutions with $X(x) = \cosh(\mu x)$ and $\mu > 0$ exist which also satisfy the other boundary condition $u_x + \beta u = 0$ in x = 1?